IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v87y2016icp33-43.html
   My bibliography  Save this article

A self-adaptive method to equalize headways: Numerical analysis and comparison

Author

Listed:
  • Liang, Shidong
  • Zhao, Shuzhi
  • Lu, Chunxiu
  • Ma, Minghui

Abstract

In uncontrolled bus systems, buses tend to bunch due to the stochastic nature of traffic flows and passenger demand at bus stops. Although schedules and priori target methods introduce slack time to delay buses at control points to maintain constant headways between successive buses, too much slack required delay passengers on-board. In addition, these methods focus on regular headways and do not consider the rates of convergence of headways after disturbances. We propose a self-adaptive control scheme to equalize the headways of buses with little slack in a single line automatically. The proposed method only requires the information from the current bus at the control point and both its leading and following buses. This elegant method is shown to regulate headways faster than existing methods. In addition, compared to previous self-equalizing methods, the proposed method can improve the travel time of buses by about 12%, while keeping the waiting time of passengers almost the same.

Suggested Citation

  • Liang, Shidong & Zhao, Shuzhi & Lu, Chunxiu & Ma, Minghui, 2016. "A self-adaptive method to equalize headways: Numerical analysis and comparison," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 33-43.
  • Handle: RePEc:eee:transb:v:87:y:2016:i:c:p:33-43
    DOI: 10.1016/j.trb.2016.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515302071
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2016.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aichong Sun & Mark Hickman, 2008. "The Holding Problem at Multiple Holding Stations," Lecture Notes in Economics and Mathematical Systems, in: Mark Hickman & Pitu Mirchandani & Stefan Voß (ed.), Computer-aided Systems in Public Transport, pages 339-359, Springer.
    2. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    3. Xuan, Yiguang & Argote, Juan & Daganzo, Carlos F., 2011. "Dynamic bus holding strategies for schedule reliability: Optimal linear control and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1831-1845.
    4. Daganzo, Carlos F., 2009. "A headway-based approach to eliminate bus bunching: Systematic analysis and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 913-921, December.
    5. Bartholdi, John J. & Eisenstein, Donald D., 2012. "A self-coördinating bus route to resist bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 481-491.
    6. Daganzo, Carlos F. & Pilachowski, Josh, 2011. "Reducing bunching with bus-to-bus cooperation," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 267-277, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiya Chen & Hengpeng Zhang & Chunxiao Chen & Xiaofan Wei, 2021. "An Integrated Bus Holding and Speed Adjusting Strategy Considering Passenger’s Waiting Time Perceptions," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    2. Liang, Shidong & Zhang, Hu & Fang, Zhiming & He, Shengxue & Zhao, Jing & Leng, Rongmeng & Ma, Minghui, 2022. "Optimal control to improve reliability of demand responsive transport priority at signalized intersections considering the stochastic process," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    3. van Lieshout, Rolf N. & Bouman, Paul C. & van den Akker, Marjan & Huisman, Dennis, 2021. "A self-organizing policy for vehicle dispatching in public transit systems with multiple lines," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 46-64.
    4. Lee, Enoch & Cen, Xuekai & Lo, Hong K., 2022. "Scheduling zonal-based flexible bus service under dynamic stochastic demand and Time-dependent travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    5. Bowen Hou & Yang Cao & Dongye Lv & Shuzhi Zhao, 2020. "Transit-Based Evacuation for Urban Rail Transit Line Emergency," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    6. van Lieshout, R.N. & Bouman, P.C. & van den Akker, M. & Huisman, D., 2020. "A Self-Organizing Policy for Vehicle Dispatching in Public Transit Systems with Multiple Lines," Econometric Institute Research Papers EI2020-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Zhang, Shuyang & Lo, Hong K., 2018. "Two-way-looking self-equalizing headway control for bus operations," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 280-301.
    8. Liang, Shidong & He, Shengxue & Zhang, Hu & Ma, Minghui, 2021. "Optimal holding time calculation algorithm to improve the reliability of high frequency bus route considering the bus capacity constraint," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    9. Qiang, Shengjie & Huang, Qingxia, 2023. "Impacts of bus holding strategies on the performance of mixed traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    10. Paula Nguyen & Ehab Diab & Amer Shalaby, 2019. "Understanding the factors that influence the probability and time to streetcar bunching incidents," Public Transport, Springer, vol. 11(2), pages 299-320, August.
    11. Vismara, Luca & Chew, Lock Yue & Saw, Vee-Liem, 2021. "Optimal assignment of buses to bus stops in a loop by reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sánchez-Martínez, G.E. & Koutsopoulos, H.N. & Wilson, N.H.M., 2016. "Real-time holding control for high-frequency transit with dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 1-19.
    2. Klumpenhouwer, W. & Wirasinghe, S.C., 2018. "Optimal time point configuration of a bus route - A Markovian approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 209-227.
    3. Zhang, Shuyang & Lo, Hong K., 2018. "Two-way-looking self-equalizing headway control for bus operations," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 280-301.
    4. Petit, Antoine & Lei, Chao & Ouyang, Yanfeng, 2019. "Multiline Bus Bunching Control via Vehicle Substitution," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 68-86.
    5. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    6. Gkiotsalitis, K. & Cats, O., 2021. "At-stop control measures in public transport: Literature review and research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    7. Bian, Bomin & Zhu, Ning & Meng, Qiang, 2023. "Real-time cruising speed design approach for multiline bus systems," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 1-24.
    8. Varga, Balázs & Tettamanti, Tamás & Kulcsár, Balázs, 2019. "Energy-aware predictive control for electrified bus networks," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Sirmatel, Isik Ilber & Geroliminis, Nikolas, 2018. "Mixed logical dynamical modeling and hybrid model predictive control of public transport operations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 325-345.
    10. Petit, Antoine & Ouyang, Yanfeng & Lei, Chao, 2018. "Dynamic bus substitution strategy for bunching intervention," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 1-16.
    11. Federico Malucelli & Emanuele Tresoldi, 2019. "Delay and disruption management in local public transportation via real-time vehicle and crew re-scheduling: a case study," Public Transport, Springer, vol. 11(1), pages 1-25, June.
    12. Chow, Andy H.F. & Li, Shuai & Zhong, Renxin, 2017. "Multi-objective optimal control formulations for bus service reliability with traffic signals," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 248-268.
    13. Andres, Matthias & Nair, Rahul, 2017. "A predictive-control framework to address bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 123-148.
    14. Weiya Chen & Hengpeng Zhang & Chunxiao Chen & Xiaofan Wei, 2021. "An Integrated Bus Holding and Speed Adjusting Strategy Considering Passenger’s Waiting Time Perceptions," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    15. Argote-Cabanero, Juan & Daganzo, Carlos F. & Lynn, Jacob W., 2015. "Dynamic control of complex transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 146-160.
    16. Zhang, Wei & (Ato) Xu, Wangtu, 2017. "Simulation-based robust optimization for the schedule of single-direction bus transit route: The design of experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 203-230.
    17. Delgado, Felipe & Munoz, Juan Carlos & Giesen, Ricardo, 2012. "How much can holding and/or limiting boarding improve transit performance?," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1202-1217.
    18. Paula Nguyen & Ehab Diab & Amer Shalaby, 2019. "Understanding the factors that influence the probability and time to streetcar bunching incidents," Public Transport, Springer, vol. 11(2), pages 299-320, August.
    19. Berrebi, Simon J. & Watkins, Kari E. & Laval, Jorge A., 2015. "A real-time bus dispatching policy to minimize passenger wait on a high frequency route," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 377-389.
    20. Dai, Zhuang & Liu, Xiaoyue Cathy & Chen, Zhuo & Guo, Renyong & Ma, Xiaolei, 2019. "A predictive headway-based bus-holding strategy with dynamic control point selection: A cooperative game theory approach," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 29-51.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:87:y:2016:i:c:p:33-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.