IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v152y2021icp46-64.html
   My bibliography  Save this article

A self-organizing policy for vehicle dispatching in public transit systems with multiple lines

Author

Listed:
  • van Lieshout, Rolf N.
  • Bouman, Paul C.
  • van den Akker, Marjan
  • Huisman, Dennis

Abstract

In this paper, we propose and analyze an online, decentralized policy for dispatching vehicles in a multi-line public transit system. In the policy, vehicles arriving at a terminal station are assigned to the lines starting at the station in a round-robin fashion. Departure times are selected to minimize deviations from a certain target headway. We prove that this policy is self-organizing: given that there is a sufficient number of available vehicles, a timetable spontaneously emerges that meets the target headway of every line. Moreover, in case one of the vehicles breaks down, the remaining vehicles automatically redistribute over the network to re-establish such a timetable. We present both theoretical and numerical results on the time until a stable state is reached and on how quickly the system recovers after the breakdown of a vehicle. Experiments on three real-world transit systems show that our policy performs well, even if not all assumptions required for the theoretical analysis are met: if there are enough vehicles, the realized headways are typically close to the target headways. These promising results suggest that our self-organizing policy could be useful in situations where centralized dispatching is impractical or simply impossible due to an abundance of disruptions or the absence of information systems.

Suggested Citation

  • van Lieshout, Rolf N. & Bouman, Paul C. & van den Akker, Marjan & Huisman, Dennis, 2021. "A self-organizing policy for vehicle dispatching in public transit systems with multiple lines," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 46-64.
  • Handle: RePEc:eee:transb:v:152:y:2021:i:c:p:46-64
    DOI: 10.1016/j.trb.2021.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261521001466
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2021.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rolf N. Van Lieshout, 2021. "Integrated Periodic Timetabling and Vehicle Circulation Scheduling," Transportation Science, INFORMS, vol. 55(3), pages 768-790, May.
    2. Liang, Shidong & Zhao, Shuzhi & Lu, Chunxiu & Ma, Minghui, 2016. "A self-adaptive method to equalize headways: Numerical analysis and comparison," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 33-43.
    3. Argote-Cabanero, Juan & Daganzo, Carlos F. & Lynn, Jacob W., 2015. "Dynamic control of complex transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 146-160.
    4. Zhang, Shuyang & Lo, Hong K., 2018. "Two-way-looking self-equalizing headway control for bus operations," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 280-301.
    5. Petit, Antoine & Lei, Chao & Ouyang, Yanfeng, 2019. "Multiline Bus Bunching Control via Vehicle Substitution," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 68-86.
    6. Bartholdi, John J. & Eisenstein, Donald D., 2012. "A self-coördinating bus route to resist bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 481-491.
    7. Hernández, Daniel & Muñoz, Juan Carlos & Giesen, Ricardo & Delgado, Felipe, 2015. "Analysis of real-time control strategies in a corridor with multiple bus services," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 83-105.
    8. Argote-Cabanero, Juan & Daganzo, Carlos F & Lynn, Jacob W, 2015. "Dynamic Control of Complex Transit Systems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6j16889k, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Lieshout, R.N. & Bouman, P.C. & van den Akker, M. & Huisman, D., 2020. "A Self-Organizing Policy for Vehicle Dispatching in Public Transit Systems with Multiple Lines," Econometric Institute Research Papers EI2020-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Bian, Bomin & Zhu, Ning & Meng, Qiang, 2023. "Real-time cruising speed design approach for multiline bus systems," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 1-24.
    3. Liang, Shidong & He, Shengxue & Zhang, Hu & Ma, Minghui, 2021. "Optimal holding time calculation algorithm to improve the reliability of high frequency bus route considering the bus capacity constraint," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    4. Petit, Antoine & Lei, Chao & Ouyang, Yanfeng, 2019. "Multiline Bus Bunching Control via Vehicle Substitution," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 68-86.
    5. Gkiotsalitis, K. & Cats, O., 2021. "At-stop control measures in public transport: Literature review and research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    6. Minyu Shen & Weihua Gu & Michael J. Cassidy & Yongjie Lin & Wei Ni, 2024. "A vicious cycle along busy bus corridors and how to abate it," Papers 2403.08230, arXiv.org.
    7. Petit, Antoine & Ouyang, Yanfeng & Lei, Chao, 2018. "Dynamic bus substitution strategy for bunching intervention," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 1-16.
    8. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    9. Weiya Chen & Hengpeng Zhang & Chunxiao Chen & Xiaofan Wei, 2021. "An Integrated Bus Holding and Speed Adjusting Strategy Considering Passenger’s Waiting Time Perceptions," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    10. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2017. "Modelling bus bunching and holding control with vehicle overtaking and distributed passenger boarding behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 175-197.
    11. Anderson, Paul & Daganzo, Carlos F., 2020. "Effect of transit signal priority on bus service reliability," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 2-14.
    12. Sánchez-Martínez, G.E. & Koutsopoulos, H.N. & Wilson, N.H.M., 2016. "Real-time holding control for high-frequency transit with dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 1-19.
    13. Qiang, Shengjie & Huang, Qingxia, 2023. "Impacts of bus holding strategies on the performance of mixed traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    14. Viktoriya Degeler & Léonie Heydenrijk-Ottens & Ding Luo & Niels Oort & Hans Lint, 2021. "Unsupervised approach towards analysing the public transport bunching swings formation phenomenon," Public Transport, Springer, vol. 13(3), pages 533-555, October.
    15. Wang, Wensi & Yu, Bin & Zhou, Yu, 2024. "A real-time synchronous dispatching and recharging strategy for multi-line electric bus systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    16. Schmöcker, Jan-Dirk & Sun, Wenzhe & Fonzone, Achille & Liu, Ronghui, 2016. "Bus bunching along a corridor served by two lines," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 300-317.
    17. Zhou, Chang & Tian, Qiong & Wang, David Z.W., 2022. "A novel control strategy in mitigating bus bunching: Utilizing real-time information," Transport Policy, Elsevier, vol. 123(C), pages 1-13.
    18. Berrebi, Simon J. & Crudden, Sean Óg & Watkins, Kari E., 2018. "Translating research to practice: Implementing real-time control on high-frequency transit routes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 213-226.
    19. Federico Malucelli & Emanuele Tresoldi, 2019. "Delay and disruption management in local public transportation via real-time vehicle and crew re-scheduling: a case study," Public Transport, Springer, vol. 11(1), pages 1-25, June.
    20. Vismara, Luca & Chew, Lock Yue & Saw, Vee-Liem, 2021. "Optimal assignment of buses to bus stops in a loop by reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:152:y:2021:i:c:p:46-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.