IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v80y2015icp303-321.html
   My bibliography  Save this article

Link travel time inference using entry/exit information of trips on a network

Author

Listed:
  • Yin, Kai
  • Wang, Wen
  • Bruce Wang, Xiubin
  • Adams, Teresa M.

Abstract

This paper studies link travel time estimation using entry/exit time stamps of trips on a steady-state transportation network. We propose two inference methods based on the likelihood principle, assuming each link associates with a random travel time. The first method considers independent and Gaussian distributed link travel times, using the additive property that trip time has a closed-form distribution as the summation of link travel times. We particularly analyze the mean estimates when the variances of trip time estimates are known with a high degree of precision and examine the uniqueness of solutions. Two cases are discussed in detail: one with known paths of all trips and the other with unknown paths of some trips. We apply the Gaussian mixture model and the Expectation–Maximization (EM) algorithm to deal with the latter. The second method splits trip time proportionally among links traversed to deal with more general link travel time distributions such as log-normal. This approach builds upon an expected log-likelihood function which naturally leads to an iterative procedure analogous to the EM algorithm for solutions. Simulation tests on a simple nine-link network and on the Sioux Falls network respectively indicate that the two methods both perform well. The second method (i.e., trip splitting approximation) generally runs faster but with larger errors of estimated standard deviations of link travel times.

Suggested Citation

  • Yin, Kai & Wang, Wen & Bruce Wang, Xiubin & Adams, Teresa M., 2015. "Link travel time inference using entry/exit information of trips on a network," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 303-321.
  • Handle: RePEc:eee:transb:v:80:y:2015:i:c:p:303-321
    DOI: 10.1016/j.trb.2015.07.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126151500154X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2015.07.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ygnace, Jean-Luc & Drane, Chris & Yim, Y. B. & de Lacvivier, Renaud, 2000. "Travel Time Estimation on the San Francisco Bay Area Network Using Cellular Phones as Probes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8xn8m01v, Institute of Transportation Studies, UC Berkeley.
    2. Meng, Qiang & Yang, Hai, 2002. "Benefit distribution and equity in road network design," Transportation Research Part B: Methodological, Elsevier, vol. 36(1), pages 19-35, January.
    3. Hofleitner, Aude & Herring, Ryan & Bayen, Alexandre, 2012. "Arterial travel time forecast with streaming data: A hybrid approach of flow modeling and machine learning," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1097-1122.
    4. Parry, Katharina & Hazelton, Martin L., 2013. "Bayesian inference for day-to-day dynamic traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 104-115.
    5. Ng, ManWo & Szeto, W.Y. & Travis Waller, S., 2011. "Distribution-free travel time reliability assessment with probability inequalities," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 852-866, July.
    6. Xiao‐Li Meng & David Van Dyk, 1997. "The EM Algorithm—an Old Folk‐song Sung to a Fast New Tune," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(3), pages 511-567.
    7. Jenelius, Erik & Koutsopoulos, Haris N., 2013. "Travel time estimation for urban road networks using low frequency probe vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 64-81.
    8. Xing, Tao & Zhou, Xuesong & Taylor, Jeffrey, 2013. "Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 66-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Sun & Yulin Chang & Xin Luan & Qiang Tu & Wenyun Tang, 2020. "Origin-Destination Demand Reconstruction Using Observed Travel Time under Congested Network," Networks and Spatial Economics, Springer, vol. 20(3), pages 733-755, September.
    2. Zhang, Canrong & Guan, Hao & Yuan, Yifei & Chen, Weiwei & Wu, Tao, 2020. "Machine learning-driven algorithms for the container relocation problem," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 102-131.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coogan, Samuel & Flores, Christopher & Varaiya, Pravin, 2017. "Traffic predictive control from low-rank structure," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 1-22.
    2. Westgate, Bradford S. & Woodard, Dawn B. & Matteson, David S. & Henderson, Shane G., 2016. "Large-network travel time distribution estimation for ambulances," European Journal of Operational Research, Elsevier, vol. 252(1), pages 322-333.
    3. Wong, Wai & Shen, Shengyin & Zhao, Yan & Liu, Henry X., 2019. "On the estimation of connected vehicle penetration rate based on single-source connected vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 169-191.
    4. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    5. Hiribarren, Gabriel & Herrera, Juan Carlos, 2014. "Real time traffic states estimation on arterials based on trajectory data," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 19-30.
    6. Comert, Gurcan, 2016. "Queue length estimation from probe vehicles at isolated intersections: Estimators for primary parameters," European Journal of Operational Research, Elsevier, vol. 252(2), pages 502-521.
    7. Nantes, Alfredo & Ngoduy, Dong & Miska, Marc & Chung, Edward, 2015. "Probabilistic travel time progression and its application to automatic vehicle identification data," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 131-145.
    8. Wong, Wai & Wong, S.C., 2015. "Systematic bias in transport model calibration arising from the variability of linear data projection," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 1-18.
    9. Wei, Chong & Asakura, Yasuo & Iryo, Takamasa, 2014. "Formulating the within-day dynamic stochastic traffic assignment problem from a Bayesian perspective," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 45-57.
    10. Laha, A. K. & Putatunda, Sayan, 2017. "Travel Time Prediction for Taxi-GPS Data Streams," IIMA Working Papers WP 2017-03-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    11. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    12. Peer, Stefanie & Knockaert, Jasper & Koster, Paul & Tseng, Yin-Yen & Verhoef, Erik T., 2013. "Door-to-door travel times in RP departure time choice models: An approximation method using GPS data," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 134-150.
    13. Zhou, Xin & Chen, Guici & Zhu, Song & Wen, Shiping, 2023. "Distributed event-triggered finite-time H∞ filtering for switched systems on sensor networks with two-channel network attacks and asynchronous modes," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    14. Herrera, Juan C. & Bayen, Alexandre M., 2010. "Incorporation of Lagrangian measurements in freeway traffic state estimation," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 460-481, May.
    15. Flötteröd, Gunnar, 2017. "A search acceleration method for optimization problems with transport simulation constraints," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 239-260.
    16. Dimitris Bertsimas & Arthur Delarue & Patrick Jaillet & Sébastien Martin, 2019. "Travel Time Estimation in the Age of Big Data," Operations Research, INFORMS, vol. 67(2), pages 498-515, March.
    17. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    18. Rinaldi, Marco & Viti, Francesco, 2017. "Exact and approximate route set generation for resilient partial observability in sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 86-119.
    19. Sengul Orgut, Irem & Freeman, Nickolas & Lewis, Dwight & Parton, Jason, 2023. "Equitable and effective vaccine access considering vaccine hesitancy and capacity constraints," Omega, Elsevier, vol. 120(C).
    20. Zhou, Lin & Tang, Yayong, 2021. "Linearly preconditioned nonlinear conjugate gradient acceleration of the PX-EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:80:y:2015:i:c:p:303-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.