IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v15y1981i4p239-248.html
   My bibliography  Save this article

Bregman's balancing method

Author

Listed:
  • Lamond, B.
  • Stewart, N. F.

Abstract

In this paper we observe that most of the independently discovered balancing methods, used in transportation planning and in other fields, are in fact special cases of a method of Bregman. Examples include the usual Kruithof or Furness method, the Evans-Kirby three dimensional balancing procedure, the Murchland multiproportional balancing procedure, the Osborne or Grad method for preconditioning matrices, the Jefferson-Scott procedure for gravity models with inequality constraints, and the method considered by Macgill for partially constrained gravity models. The convergence of all of these methods follows from Bregman's general result.

Suggested Citation

  • Lamond, B. & Stewart, N. F., 1981. "Bregman's balancing method," Transportation Research Part B: Methodological, Elsevier, vol. 15(4), pages 239-248, August.
  • Handle: RePEc:eee:transb:v:15:y:1981:i:4:p:239-248
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0191-2615(81)90010-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teye, Collins & Bell, Michael GH & Bliemer, Michiel CJ, 2018. "Locating urban and regional container terminals in a competitive environment: An entropy maximising approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 971-985.
    2. Teye, Collins & Bell, Michael G H & Bliemer, Michiel C J, 2017. "Urban intermodal terminals: The entropy maximising facility location problem," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 64-81.
    3. Li, Yuwei & Cassidy, Michael J., 2007. "A generalized and efficient algorithm for estimating transit route ODs from passenger counts," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 114-125, January.
    4. Teye, Collins & Bell, Michael G.H. & Bliemer, Michiel C.J., 2017. "Entropy maximising facility location model for port city intermodal terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 1-16.
    5. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    6. Menon, Aditya Krishna & Cai, Chen & Wang, Weihong & Wen, Tao & Chen, Fang, 2015. "Fine-grained OD estimation with automated zoning and sparsity regularisation," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 150-172.
    7. Zhaonan Qu & Alfred Galichon & Johan Ugander, 2023. "On Sinkhorn's Algorithm and Choice Modeling," Papers 2310.00260, arXiv.org.
    8. Fan, Ying & Xia, Yan, 2012. "Exploring energy consumption and demand in China," Energy, Elsevier, vol. 40(1), pages 23-30.
    9. Wu, Jifeng, 1997. "A real-time origin-destination matrix updating algorithm for on-line applications," Transportation Research Part B: Methodological, Elsevier, vol. 31(5), pages 381-396, October.
    10. Li, Baibing, 2009. "Markov models for Bayesian analysis about transit route origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 301-310, March.
    11. Ampol Karoonsoontawong & Dung-Ying Lin, 2015. "Combined Gravity Model Trip Distribution and Paired Combinatorial Logit Stochastic User Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 15(4), pages 1011-1048, December.
    12. Kerem Akartunalı & Philip A. Knight, 2017. "Network models and biproportional rounding for fair seat allocations in the UK elections," Annals of Operations Research, Springer, vol. 253(1), pages 1-19, June.
    13. K. Kiwiel, 1994. "Free-Steering Relaxation Methods for Problems with Strictly Convex Costs and Linear Constraints," Working Papers wp94089, International Institute for Applied Systems Analysis.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:15:y:1981:i:4:p:239-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.