IDEAS home Printed from https://ideas.repec.org/a/rom/mrpase/v5y2013i4p5-18.html
   My bibliography  Save this article

Factors Affecting The Citizen’S Trends To Use The Pedestrian Bridges In Iran

Author

Listed:
  • Ali SOLTANI

    (Department of Urban Planning, Faculty of Art and Architecture, Shiraz University, Iran)

  • Samaneh MOZAYENI

    (Department of Urban Planning, McMaster Univrersity, Canada)

Abstract

Pedestrian bridges eliminate all conflicts with traffic on the road below. They would sound to be the great solution for getting pedestrians across the street. But do they constantly work well? The primary goal of this study was to determine the trends of the pedestrians as they made use of these bridges. Ten pedestrian bridges in Tehran and Shiraz, two major cities of Iran, were chosen for observation of their rate of use by pedestrians. A survey was conducted among 200 pedestrians including those who used the bridges, and those who chose instead to risk traffic and cross the street under the bridge. The respondents’ perception about the safety of crossing the road was inversely related to the respondents’ bridge use. Other factors positively influencing bridge use included time of day, density of people under the bridge, and previous involvement in a traffic accident.

Suggested Citation

  • Ali SOLTANI & Samaneh MOZAYENI, 2013. "Factors Affecting The Citizen’S Trends To Use The Pedestrian Bridges In Iran," Management Research and Practice, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 5(4), pages 5-18, December.
  • Handle: RePEc:rom:mrpase:v:5:y:2013:i:4:p:5-18
    as

    Download full text from publisher

    File URL: https://mrp.ase.ro/no54/f1.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Jianguo & Deng, Wen & Wang, Jinmei & Li, Qingfeng & Wang, Zhaoan, 2006. "Modeling pedestrians' road crossing behavior in traffic system micro-simulation in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(3), pages 280-290, March.
    2. Hoogendoorn, S. P. & Bovy, P. H. L., 2004. "Pedestrian route-choice and activity scheduling theory and models," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 169-190, February.
    3. Keegan, Owen & O'Mahony, Margaret, 2003. "Modifying pedestrian behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 889-901, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Baibing, 2014. "A bilevel model for multivariate risk analysis of pedestrians’ crossing behavior at signalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 18-30.
    2. Li, Baibing, 2013. "A model of pedestrians’ intended waiting times for street crossings at signalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 17-28.
    3. Li, Baibing, 2024. "A new generalized statistical model for continuous decisions under stochastic constraints and bounded rationality," Transportation Research Part B: Methodological, Elsevier, vol. 190(C).
    4. Joohyun Lee & Mardelle McCuskey Shepley, 2020. "College Campuses and Student Walkability: Assessing the Impact of Smartphone Use on Student Perception and Evaluation of Urban Campus Routes," Sustainability, MDPI, vol. 12(23), pages 1-18, November.
    5. Korbmacher, Raphael & Dang, Huu-Tu & Tordeux, Antoine, 2024. "Predicting pedestrian trajectories at different densities: A multi-criteria empirical analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    6. Mohammed Mahmod Shuaib, 2016. "Modeling the Pedestrian Ability of Detecting Lanes and Lane Changing Behavior," Modern Applied Science, Canadian Center of Science and Education, vol. 10(7), pages 1-1, July.
    7. Jin, Cheng-Jie & Fang, Shuyi & Jiang, Rui & Xue, Kaiwen & Li, Dawei, 2024. "Cellular automaton simulations of hybrid pedestrian movement in two-route situation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 651(C).
    8. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    9. Rahul, T.M. & Manoj, M., 2020. "Categorization of pedestrian level of service perceptions and accounting its response heterogeneity and latent correlation on travel decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 40-55.
    10. Xu, Xin-yue & Liu, Jun & Li, Hai-ying & Jiang, Man, 2016. "Capacity-oriented passenger flow control under uncertain demand: Algorithm development and real-world case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 130-148.
    11. Qingyan Ning & Maosheng Li, 2022. "Modeling Pedestrian Detour Behavior By-Passing Conflict Areas," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    12. Wang, Shuaian & Zhang, Wei & Qu, Xiaobo, 2018. "Trial-and-error train fare design scheme for addressing boarding/alighting congestion at CBD stations," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 318-335.
    13. Lili Lu, A. & Gang Ren, B. & Wei Wang, C. & Ching-Yao Chan, D., 2015. "Application of SFCA pedestrian simulation model to the signalized crosswalk width design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 76-89.
    14. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2019. "When ‘push’ does not come to ‘shove’: Revisiting ‘faster is slower’ in collective egress of human crowds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 51-69.
    15. Guo, Ren-Yong, 2014. "Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 428-439.
    16. Jae Min Lee, 2020. "Exploring Walking Behavior in the Streets of New York City Using Hourly Pedestrian Count Data," Sustainability, MDPI, vol. 12(19), pages 1-16, September.
    17. Yang, Jianguo & Deng, Wen & Wang, Jinmei & Li, Qingfeng & Wang, Zhaoan, 2006. "Modeling pedestrians' road crossing behavior in traffic system micro-simulation in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(3), pages 280-290, March.
    18. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
    19. Bo-Xun Huang & Shang-Chia Chiou & Wen-Ying Li, 2020. "Accessibility and Street Network Characteristics of Urban Public Facility Spaces: Equity Research on Parks in Fuzhou City Based on GIS and Space Syntax Model," Sustainability, MDPI, vol. 12(9), pages 1-19, April.
    20. Saarloos, Dick & Joh, Chang-Hyeon & Zhang, Junyi & Fujiwara, Akimasa, 2010. "A segmentation study of pedestrian weekend activity patterns in a central business district," Journal of Retailing and Consumer Services, Elsevier, vol. 17(2), pages 119-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rom:mrpase:v:5:y:2013:i:4:p:5-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Colesca Sofia (email available below). General contact details of provider: https://edirc.repec.org/data/ccasero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.