IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v46y2012i2p333-341.html
   My bibliography  Save this article

Calculating errors for measures derived from choice modelling estimates

Author

Listed:
  • Daly, Andrew
  • Hess, Stephane
  • de Jong, Gerard

Abstract

The calibration of choice models produces a set of parameter estimates and an associated covariance matrix, usually based on maximum likelihood estimation. However, in many cases, the values of interest to analysts are in fact functions of these parameters rather than the parameters themselves. It is thus also crucial to have a measure of variance for these derived quantities and it is preferable that this can be guaranteed to have the maximum likelihood properties, such as minimum variance. While the calculation of standard errors using the Delta method has been described for a number of such measures in the literature, including the ratio of two parameters, these results are often seen to be approximate calculations and do not claim maximum likelihood properties. In this paper, we show that many measures commonly used in transport studies and elsewhere are themselves maximum likelihood estimates and that the standard errors are thus exact, a point we illustrate for a substantial number of commonly used functions. We also discuss less appropriate methods, notably highlighting the issues with using simulation for obtaining the variance of a function of estimates.

Suggested Citation

  • Daly, Andrew & Hess, Stephane & de Jong, Gerard, 2012. "Calculating errors for measures derived from choice modelling estimates," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 333-341.
  • Handle: RePEc:eee:transb:v:46:y:2012:i:2:p:333-341
    DOI: 10.1016/j.trb.2011.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261511001482
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2011.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arne Risa Hole, 2007. "A comparison of approaches to estimating confidence intervals for willingness to pay measures," Health Economics, John Wiley & Sons, Ltd., vol. 16(8), pages 827-840, August.
    2. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, January.
    3. Gerard Jong & Andrew Daly & Marits Pieters & Stephen Miller & Ronald Plasmeijer & Frank Hofman, 2007. "Uncertainty in traffic forecasts: literature review and new results for The Netherlands," Transportation, Springer, vol. 34(4), pages 375-395, July.
    4. Papola, Andrea, 2004. "Some developments on the cross-nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 38(9), pages 833-851, November.
    5. Krinsky, Itzhak & Robb, A Leslie, 1986. "On Approximating the Statistical Properties of Elasticities," The Review of Economics and Statistics, MIT Press, vol. 68(4), pages 715-719, November.
    6. Marzano, Vittorio & Papola, Andrea, 2008. "On the covariance structure of the Cross-Nested Logit model," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 83-98, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scaccia, Luisa & Marcucci, Edoardo & Gatta, Valerio, 2023. "Prediction and confidence intervals of willingness-to-pay for mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 54-78.
    2. Joachim Marti, 2012. "Assessing preferences for improved smoking cessation medications: a discrete choice experiment," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 13(5), pages 533-548, October.
    3. Carnegie, Rachel & Wang, Holly & Widmar, Nicole & Ortega, David, 2014. "Consumer Preferences for Quality and Safety Attributes of Duck in Restaurant Entrees: Is China A Viable Market for The U.S. Duck Industry?," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170717, Agricultural and Applied Economics Association.
    4. Wakamatsu, Mihoko & Shin, Kong Joo & Wilson, Clevo & Managi, Shunsuke, 2018. "Exploring a Gap between Australia and Japan in the Economic Valuation of Whale Conservation," Ecological Economics, Elsevier, vol. 146(C), pages 397-407.
    5. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    6. Marzano, Vittorio & Papola, Andrea & Simonelli, Fulvio & Vitillo, Roberta, 2013. "A practically tractable expression of the covariances of the Cross-Nested Logit model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 1-11.
    7. Marzano, Vittorio, 2014. "A simple procedure for the calculation of the covariances of any Generalized Extreme Value model," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 151-162.
    8. Benoit Chèze & Charles Collet & Anthony Paris, 2021. "Estimating discrete choice experiments : theoretical fundamentals," CIRED Working Papers hal-03262187, HAL.
    9. Ortega, David L. & Wang, H. Holly & Wu, Laping & Olynk, Nicole J., 2011. "Modeling heterogeneity in consumer preferences for select food safety attributes in China," Food Policy, Elsevier, vol. 36(2), pages 318-324, April.
    10. Sardaro, Ruggiero & Faccilongo, Nicola & Roselli, Luigi, 2019. "Wind farms, farmland occupation and compensation: Evidences from landowners’ preferences through a stated choice survey in Italy," Energy Policy, Elsevier, vol. 133(C).
    11. Ruggiero Sardaro & Nicola Faccilongo & Francesco Contò & Piermichele La Sala, 2021. "Adaption Actions to Cope with Climate Change: Evidence from Farmers’ Preferences on an Agrobiodiversity Conservation Programme in the Mediterranean Area," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    12. Hole, Arne Risa, 2008. "Modelling heterogeneity in patients' preferences for the attributes of a general practitioner appointment," Journal of Health Economics, Elsevier, vol. 27(4), pages 1078-1094, July.
    13. Ortega, David L. & Wang, H. Holly & Olynk Widmar, Nicole J. & Wu, Laping, 2014. "Chinese producer behavior: Aquaculture farmers in southern China," China Economic Review, Elsevier, vol. 28(C), pages 17-24.
    14. Sclen, Håkon & Kallbekken, Steffen, 2011. "A choice experiment on fuel taxation and earmarking in Norway," Ecological Economics, Elsevier, vol. 70(11), pages 2181-2190, September.
    15. Jianhua Wang & Jiaye Ge & Yuting Ma, 2018. "Urban Chinese Consumers’ Willingness to Pay for Pork with Certified Labels: A Discrete Choice Experiment," Sustainability, MDPI, vol. 10(3), pages 1-14, February.
    16. Carson, Richard T. & Czajkowski, Mikołaj, 2019. "A new baseline model for estimating willingness to pay from discrete choice models," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 57-61.
    17. Koichi Yonezawa & Miguel I Gómez & Timothy J Richards, 2020. "The Robinson–Patman Act and Vertical Relationships," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 329-352, January.
    18. Rombach, Meike & Widmar, Nicole Olynk & Byrd, Elizabeth & Bitsch, Vera, 2018. "Do all roses smell equally sweet? Willingness to pay for flower attributes in specialized retail settings by German consumers," Journal of Retailing and Consumer Services, Elsevier, vol. 40(C), pages 91-99.
    19. Shijiu Yin & Shanshan Lv & Yusheng Chen & Linhai Wu & Mo Chen & Jiang Yan, 2018. "Consumer preference for infant milk‐based formula with select food safety information attributes: Evidence from a choice experiment in China," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 66(4), pages 557-569, December.
    20. Choi, Andy S., 2011. "Implicit prices for longer temporary exhibitions in a heritage site and a test of preference heterogeneity: A segmentation-based approach," Tourism Management, Elsevier, vol. 32(3), pages 511-519.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:46:y:2012:i:2:p:333-341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.