IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v32y1998i1p35-48.html
   My bibliography  Save this article

Estimation of time-dependent origin-destination matrices for transit networks

Author

Listed:
  • Wong, S. C.
  • Tong, C. O.

Abstract

In this paper, the estimation of time-dependent origin-destination (O-D) matrices for transit network based on observed passenger counts is given. The dynamic assignment framework is based on a schedule-based transit network model, which can help determine the time-dependent least cost paths between all O-D pairs, and for each of them the clock arrival times at the end nodes of all observed links (if any) in the transit network. An entropy-based approach is then employed to estimate the time-dependent O-D matrices based on the observed passenger counts at those observed links in the network. An efficient sparse algorithm is also proposed to solve the resulting mathematical programming problem. The estimation methodology is tested in a transit network from the Mass Transit Railway (MTR) system in Hong Kong which is one of the busiest railway systems in the world. Both cases with and without prior information of the O-D matrices are considered for this network. The predicted matrices are then compared with the true matrices obtained from a sophisticated electronic fare collection system of MTR. Good agreement between predicted and observed matrices are found.

Suggested Citation

  • Wong, S. C. & Tong, C. O., 1998. "Estimation of time-dependent origin-destination matrices for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 32(1), pages 35-48, January.
  • Handle: RePEc:eee:transb:v:32:y:1998:i:1:p:35-48
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(97)00011-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Hai & Iida, Yasunori & Sasaki, Tsuna, 1994. "The equilibrium-based origin-destination matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 28(1), pages 23-33, February.
    2. Spiess, Heinz & Florian, Michael, 1989. "Optimal strategies: A new assignment model for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 83-102, April.
    3. Cascetta, Ennio, 1984. "Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 289-299.
    4. Bell, Michael G. H., 1991. "The estimation of origin-destination matrices by constrained generalised least squares," Transportation Research Part B: Methodological, Elsevier, vol. 25(1), pages 13-22, February.
    5. Claude Chriqui & Pierre Robillard, 1975. "Common Bus Lines," Transportation Science, INFORMS, vol. 9(2), pages 115-121, May.
    6. Ennio Cascetta & Domenico Inaudi & Gérald Marquis, 1993. "Dynamic Estimators of Origin-Destination Matrices Using Traffic Counts," Transportation Science, INFORMS, vol. 27(4), pages 363-373, November.
    7. Yang, Hai & Sasaki, Tsuna & Iida, Yasunori & Asakura, Yasuo, 1992. "Estimation of origin-destination matrices from link traffic counts on congested networks," Transportation Research Part B: Methodological, Elsevier, vol. 26(6), pages 417-434, December.
    8. Van Zuylen, Henk J. & Willumsen, Luis G., 1980. "The most likely trip matrix estimated from traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 281-293, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong, C.O. & Wong, S.C., 1998. "A stochastic transit assignment model using a dynamic schedule-based network," Transportation Research Part B: Methodological, Elsevier, vol. 33(2), pages 107-121, April.
    2. Li, Guoyuan & Chen, Anthony, 2022. "Frequency-based path flow estimator for transit origin-destination trip matrices incorporating automatic passenger count and automatic fare collection data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    3. Flurin S. Hänseler & Nicholas A. Molyneaux & Michel Bierlaire, 2017. "Estimation of Pedestrian Origin-Destination Demand in Train Stations," Transportation Science, INFORMS, vol. 51(3), pages 981-997, August.
    4. Agostino Nuzzolo & Francesco Russo & Umberto Crisalli, 2001. "A Doubly Dynamic Schedule-based Assignment Model for Transit Networks," Transportation Science, INFORMS, vol. 35(3), pages 268-285, August.
    5. Hänseler, Flurin S. & Bierlaire, Michel & Scarinci, Riccardo, 2016. "Assessing the usage and level-of-service of pedestrian facilities in train stations: A Swiss case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 106-123.
    6. Poon, M. H. & Wong, S. C. & Tong, C. O., 2004. "A dynamic schedule-based model for congested transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 343-368, May.
    7. Androutsopoulos, Konstantinos N. & Zografos, Konstantinos G., 2009. "Solving the multi-criteria time-dependent routing and scheduling problem in a multimodal fixed scheduled network," European Journal of Operational Research, Elsevier, vol. 192(1), pages 18-28, January.
    8. Abderrahman Ait-Ali & Jonas Eliasson, 2022. "The value of additional data for public transport origin–destination matrix estimation," Public Transport, Springer, vol. 14(2), pages 419-439, June.
    9. Kumar, Anshuman Anjani & Kang, Jee Eun & Kwon, Changhyun & Nikolaev, Alexander, 2016. "Inferring origin-destination pairs and utility-based travel preferences of shared mobility system users in a multi-modal environment," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 270-291.
    10. Sun, Ran & Fan, Yueyue, 2024. "Stochastic OD demand estimation using stochastic programming," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    11. Diana P. Moreno-Palacio & Carlos A. Gonzalez-Calderon & John Jairo Posada-Henao & Hector Lopez-Ospina & Jhan Kevin Gil-Marin, 2022. "Entropy-Based Transit Tour Synthesis Using Fuzzy Logic," Sustainability, MDPI, vol. 14(21), pages 1-25, November.
    12. Chen, Kang & Yang, Zhongzhen & Notteboom, Theo, 2014. "The design of coastal shipping services subject to carbon emission reduction targets and state subsidy levels," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 192-211.
    13. Tangjian Wei & Feng Shi & Guangming Xu, 2019. "Estimation of Time-Varying Passenger Demand for High Speed Rail System," Complexity, Hindawi, vol. 2019, pages 1-24, March.
    14. Häme, Lauri & Hakula, Harri, 2013. "Dynamic journeying under uncertainty," European Journal of Operational Research, Elsevier, vol. 225(3), pages 455-471.
    15. Yang Chen & Shu Yang & Mengqi Hu & Yao-Jan Wu, 2016. "A reliability-based transit trip planning model under transit network uncertainty," Public Transport, Springer, vol. 8(3), pages 477-496, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gunnar Flötteröd & Michel Bierlaire & Kai Nagel, 2011. "Bayesian Demand Calibration for Dynamic Traffic Simulations," Transportation Science, INFORMS, vol. 45(4), pages 541-561, November.
    2. Shen, Wei & Wynter, Laura, 2012. "A new one-level convex optimization approach for estimating origin–destination demand," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1535-1555.
    3. Menon, Aditya Krishna & Cai, Chen & Wang, Weihong & Wen, Tao & Chen, Fang, 2015. "Fine-grained OD estimation with automated zoning and sparsity regularisation," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 150-172.
    4. Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
    5. Hai Yang & Qiang Meng & Michael G. H. Bell, 2001. "Simultaneous Estimation of the Origin-Destination Matrices and Travel-Cost Coefficient for Congested Networks in a Stochastic User Equilibrium," Transportation Science, INFORMS, vol. 35(2), pages 107-123, May.
    6. Sherali, Hanif D. & Narayanan, Arvind & Sivanandan, R., 2003. "Estimation of origin-destination trip-tables based on a partial set of traffic link volumes," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 815-836, November.
    7. Anselmo Ramalho Pitombeira-Neto & Carlos Felipe Grangeiro Loureiro & Luis Eduardo Carvalho, 2020. "A Dynamic Hierarchical Bayesian Model for the Estimation of day-to-day Origin-destination Flows in Transportation Networks," Networks and Spatial Economics, Springer, vol. 20(2), pages 499-527, June.
    8. Lo, H. P. & Zhang, N. & Lam, W. H. K., 1999. "Decomposition algorithm for statistical estimation of OD matrix with random link choice proportions from traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 33(5), pages 369-385, June.
    9. Doblas, Javier & Benitez, Francisco G., 2005. "An approach to estimating and updating origin-destination matrices based upon traffic counts preserving the prior structure of a survey matrix," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 565-591, August.
    10. Xie, Chi & Kockelman, Kara M. & Waller, S. Travis, 2011. "A maximum entropy-least squares estimator for elastic origin–destination trip matrix estimation," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1465-1482.
    11. Dimitris Bertsimas & Julia Yan, 2018. "From Physical Properties of Transportation Flows to Demand Estimation: An Optimization Approach," Transportation Science, INFORMS, vol. 52(4), pages 1002-1011, August.
    12. S. Travis Waller & Sai Chand & Aleksa Zlojutro & Divya Nair & Chence Niu & Jason Wang & Xiang Zhang & Vinayak V. Dixit, 2021. "Rapidex: A Novel Tool to Estimate Origin–Destination Trips Using Pervasive Traffic Data," Sustainability, MDPI, vol. 13(20), pages 1-27, October.
    13. Louis Grange & Felipe González & Shlomo Bekhor, 2017. "Path Flow and Trip Matrix Estimation Using Link Flow Density," Networks and Spatial Economics, Springer, vol. 17(1), pages 173-195, March.
    14. Hazelton, Martin L., 2000. "Estimation of origin-destination matrices from link flows on uncongested networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(7), pages 549-566, September.
    15. Yang, Yudi & Fan, Yueyue, 2015. "Data dependent input control for origin–destination demand estimation using observability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 385-403.
    16. Lo, Hing-Po & Chan, Chi-Pak, 2003. "Simultaneous estimation of an origin-destination matrix and link choice proportions using traffic counts," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(9), pages 771-788, November.
    17. Yang, Yudi & Fan, Yueyue & Wets, Roger J.B., 2018. "Stochastic travel demand estimation: Improving network identifiability using multi-day observation sets," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 192-211.
    18. Lo, H. P. & Zhang, N. & Lam, W. H. K., 1996. "Estimation of an origin-destination matrix with random link choice proportions: A statistical approach," Transportation Research Part B: Methodological, Elsevier, vol. 30(4), pages 309-324, August.
    19. Bielli, Maurizio & Reverberi, Pierfrancesco, 1996. "New operations research and artificial intelligence approaches to traffic engineering problems," European Journal of Operational Research, Elsevier, vol. 92(3), pages 550-572, August.
    20. Bierlaire, M. & Toint, Ph. L., 1995. "Meuse: An origin-destination matrix estimator that exploits structure," Transportation Research Part B: Methodological, Elsevier, vol. 29(1), pages 47-60, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:32:y:1998:i:1:p:35-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.