IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v190y2024ics0191261524001930.html
   My bibliography  Save this article

Dynamic scheduling of flexible bus services with hybrid requests and fairness: Heuristics-guided multi-agent reinforcement learning with imitation learning

Author

Listed:
  • Wu, Weitiao
  • Zhu, Yanchen
  • Liu, Ronghui

Abstract

Flexible bus is a class of demand-responsive transit that provides door-to-door service. It is gaining popularity now but also encounters many challenges, such as high dynamism, immediacy requirements, and financial sustainability. Scientific literature designs flexible bus services only for reservation demand, overlooking the potential market for immediate demand that can improve ride pooling and financial sustainability. The increasing availability of historical travel demand data provides opportunities for leveraging future demand prediction in optimizing fleet utilization. This study investigates prediction failure risk-aware dynamic scheduling flexible bus services with hybrid requests allowing for both reservation and immediate demand. Equity in request waiting time for immediate demand is emphasized as a key objective. We model this problem as a multi-objective Markov decision process to jointly optimize vehicle routing, timetable, holding control and passenger assignment. To solve this problem, we develop a novel heuristics-guided multi-agent reinforcement learning (MARL) framework entailing three salient features: 1) incorporating the demand forecasting and prediction error correction modules into the MARL framework; 2) combining the benefits of MARL, local search algorithm, and imitation learning (IL) to improve solution quality; 3) incorporating an improved strategy in action selection with time-related information about spatio-temporal relationships between vehicles and passengers to enhance training efficiency. These enhancements are general methodological contributions to the artificial intelligence and operations research communities. Numerical experiments show that our proposed method is comparable to prevailing benchmark methods both with respect to training stability and solution quality. The benefit of demand prediction is significant even when the prediction is imperfect. Our model and algorithm are applied to a real-world case study in Guangzhou, China. Managerial insights are also provided.

Suggested Citation

  • Wu, Weitiao & Zhu, Yanchen & Liu, Ronghui, 2024. "Dynamic scheduling of flexible bus services with hybrid requests and fairness: Heuristics-guided multi-agent reinforcement learning with imitation learning," Transportation Research Part B: Methodological, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:transb:v:190:y:2024:i:c:s0191261524001930
    DOI: 10.1016/j.trb.2024.103069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524001930
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.103069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:190:y:2024:i:c:s0191261524001930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.