IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v189y2024ics0191261524001218.html
   My bibliography  Save this article

Markov game for CV joint adaptive routing in stochastic traffic networks: A scalable learning approach

Author

Listed:
  • Yang, Shan
  • Liu, Yang

Abstract

This study proposes a learning-based approach to tackle the challenge of joint adaptive routing in stochastic traffic networks with Connected Vehicles (CVs). We introduce a Markov Routing Game (MRG) to model the adaptive routing behavior of all vehicles in such networks, thereby incorporating both competitive route choices and real-time decision-making. We establish the existence of the Nash policy (i.e., optimal joint adaptive routing policy) within the MRG that enables vehicles to adapt optimally to real-time traffic conditions online through efficient communication. To enhance scalability, we innovate with a homogeneity-based mean-field approximation method and, based on that, further develop the Homogeneity-based Mean-Field Deep Reinforcement Learning (HMF-DRL) algorithm to learn the Nash policy within the MRG. Through numerical experiments on the Nguyen–Dupuis network, we demonstrate our algorithm’s ability to efficiently converge and learn the joint adaptive routing policy that significantly enhances traffic network efficiency. Furthermore, our study provides insights into the effects of travel demand, penetration of CVs, and levels of uncertainty on the performance of the joint adaptive routing policy. This paper presents a significant step towards improving network efficiency and reducing the travel time for a majority of vehicles amid uncertain traffic conditions.

Suggested Citation

  • Yang, Shan & Liu, Yang, 2024. "Markov game for CV joint adaptive routing in stochastic traffic networks: A scalable learning approach," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:transb:v:189:y:2024:i:c:s0191261524001218
    DOI: 10.1016/j.trb.2024.102997
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524001218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.102997?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:189:y:2024:i:c:s0191261524001218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.