IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v173y2023icp292-312.html
   My bibliography  Save this article

An iterative improvement approach for high-speed train maintenance scheduling

Author

Listed:
  • Lin, Boliang
  • Shen, Yaoming
  • Wang, Zhongkai
  • Ni, Shaoquan
  • Zhao, Yinan

Abstract

The high-level maintenance plan is the train-set overhaul arrangement that is scheduled annually and manually in China. Previous studies have investigated this issue based on deterministic daily mileages. However, future daily mileages are difficult to predict, which may cause existing plans to be inaccurate and unfeasible in practice. Therefore, this study only considers the historical daily mileages as raw inputs, and the future daily mileages are considered as ranges to generate wider maintenance time windows for train-sets. Subsequently, a 0–1 integer linear programming model for high-level maintenance scheduling is formulated. After obtaining a high-level maintenance plan, the planned daily mileages of all train-sets are calculated and verified. To make all planned daily mileages feasible, we design an iterative algorithm to adjust the time windows and update the plan. A real-world case study is conducted using the data of 124 CRH2 EMU train-sets belonging to China Railway Shanghai Group to prove the effectiveness of the model and the algorithm. The commercial solver Gurobi is used to solve this case. A program supporting high-level maintenance scheduling has been developed, and it has been used by planners for testing.

Suggested Citation

  • Lin, Boliang & Shen, Yaoming & Wang, Zhongkai & Ni, Shaoquan & Zhao, Yinan, 2023. "An iterative improvement approach for high-speed train maintenance scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 292-312.
  • Handle: RePEc:eee:transb:v:173:y:2023:i:c:p:292-312
    DOI: 10.1016/j.trb.2023.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261523000887
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2023.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frisch, Sarah & Hungerländer, Philipp & Jellen, Anna & Primas, Bernhard & Steininger, Sebastian & Weinberger, Dominic, 2021. "Solving a real-world Locomotive Scheduling Problem with Maintenance Constraints," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 386-409.
    2. Lin, Boliang & Zhao, Yinan, 2021. "Synchronized optimization of EMU train assignment and second-level preventive maintenance scheduling," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Tönissen, D.D. & Arts, J.J., 2018. "Economies of scale in recoverable robust maintenance location routing for rolling stock," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 360-377.
    4. Tönissen, D.D. & Arts, J.J., 2020. "The stochastic maintenance location routing allocation problem for rolling stock," International Journal of Production Economics, Elsevier, vol. 230(C).
    5. Lingaya, Norbert & Cordeau, Jean-Françcois & Desaulniers, Guy & Desrosiers, Jacques & Soumis, Françcois, 2002. "Operational car assignment at VIA Rail Canada," Transportation Research Part B: Methodological, Elsevier, vol. 36(9), pages 755-778, November.
    6. Zhong, Qingwei & Lusby, Richard M. & Larsen, Jesper & Zhang, Yongxiang & Peng, Qiyuan, 2019. "Rolling stock scheduling with maintenance requirements at the Chinese High-Speed Railway," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 24-44.
    7. Richard Freling & Ramon M. Lentink & Leo G. Kroon & Dennis Huisman, 2005. "Shunting of Passenger Train Units in a Railway Station," Transportation Science, INFORMS, vol. 39(2), pages 261-272, May.
    8. Cheng, Yung-Hsiang & Tsao, Hou-Lei, 2010. "Rolling stock maintenance strategy selection, spares parts' estimation, and replacements' interval calculation," International Journal of Production Economics, Elsevier, vol. 128(1), pages 404-412, November.
    9. Gao, Yuan & Xia, Jun & D’Ariano, Andrea & Yang, Lixing, 2022. "Weekly rolling stock planning in Chinese high-speed rail networks," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 295-322.
    10. Gábor Maróti & Leo Kroon, 2005. "Maintenance Routing for Train Units: The Transition Model," Transportation Science, INFORMS, vol. 39(4), pages 518-525, November.
    11. Lin, Boliang & Wu, Jianping & Lin, Ruixi & Wang, Jiaxi & Wang, Hui & Zhang, Xuhui, 2019. "Optimization of high-level preventive maintenance scheduling for high-speed trains," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 261-275.
    12. Joris C. Wagenaar & Leo G. Kroon & Marie Schmidt, 2017. "Maintenance Appointments in Railway Rolling Stock Rescheduling," Transportation Science, INFORMS, vol. 51(4), pages 1138-1160, November.
    13. Jian Li & Boliang Lin & Zhongkai Wang & Lei Chen & Jiaxi Wang, 2016. "A Pragmatic Optimization Method for Motor Train Set Assignment and Maintenance Scheduling Problem," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-13, March.
    14. Ralf Borndörfer & Markus Reuther & Thomas Schlechte & Kerstin Waas & Steffen Weider, 2016. "Integrated Optimization of Rolling Stock Rotations for Intercity Railways," Transportation Science, INFORMS, vol. 50(3), pages 863-877, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boliang & Zhao, Yinan, 2021. "Synchronized optimization of EMU train assignment and second-level preventive maintenance scheduling," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Gao, Yuan & Xia, Jun & D’Ariano, Andrea & Yang, Lixing, 2022. "Weekly rolling stock planning in Chinese high-speed rail networks," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 295-322.
    3. Zhong, Qingwei & Lusby, Richard M. & Larsen, Jesper & Zhang, Yongxiang & Peng, Qiyuan, 2019. "Rolling stock scheduling with maintenance requirements at the Chinese High-Speed Railway," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 24-44.
    4. Joris C. Wagenaar & Leo G. Kroon & Marie Schmidt, 2017. "Maintenance Appointments in Railway Rolling Stock Rescheduling," Transportation Science, INFORMS, vol. 51(4), pages 1138-1160, November.
    5. Wang, Jiaxi, 2024. "Maintenance scheduling at high-speed train depots: An optimization approach," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Gao, Yuan & Schmidt, Marie & Yang, Lixing & Gao, Ziyou, 2020. "A branch-and-price approach for trip sequence planning of high-speed train units," Omega, Elsevier, vol. 92(C).
    7. Canca, David & Barrena, Eva, 2018. "The integrated rolling stock circulation and depot location problem in railway rapid transit systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 115-138.
    8. Tönissen, D.D. & Arts, J.J., 2020. "The stochastic maintenance location routing allocation problem for rolling stock," International Journal of Production Economics, Elsevier, vol. 230(C).
    9. Arianna Alfieri & Rutger Groot & Leo Kroon & Alexander Schrijver, 2006. "Efficient Circulation of Railway Rolling Stock," Transportation Science, INFORMS, vol. 40(3), pages 378-391, August.
    10. Frisch, Sarah & Hungerländer, Philipp & Jellen, Anna & Primas, Bernhard & Steininger, Sebastian & Weinberger, Dominic, 2021. "Solving a real-world Locomotive Scheduling Problem with Maintenance Constraints," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 386-409.
    11. Valentina Cacchiani & Alberto Caprara & Paolo Toth, 2019. "An Effective Peak Period Heuristic for Railway Rolling Stock Planning," Transportation Science, INFORMS, vol. 53(3), pages 746-762, May.
    12. Wang, Entai & Yang, Lixing & Yin, Jiateng & Zhang, Jinlei & Gao, Ziyou, 2024. "Passenger-oriented rolling stock scheduling in the metro system with multiple depots: Network flow based approaches," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).
    13. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.
    14. Hoogervorst, R. & Dollevoet, T.A.B. & Maróti, G. & Huisman, D., 2019. "A Variable Neighborhood Search Heuristic for Rolling Stock Rescheduling," Econometric Institute Research Papers EI2019-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    15. Zhao, Yaqiong & Li, Dewei & Yin, Yonghao & Zhao, Xiaoli, 2023. "Integrated optimization of demand-driven timetable, train formation plan and rolling stock circulation with variable running times and dwell times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    16. Pan, Hanchuan & Yang, Lixing & Liang, Zhe, 2023. "Demand-oriented integration optimization of train timetabling and rolling stock circulation planning with flexible train compositions: A column-generation-based approach," European Journal of Operational Research, Elsevier, vol. 305(1), pages 184-206.
    17. Budai-Balke, G. & Maróti, G. & Dekker, R. & Huisman, D. & Kroon, L.G., 2007. "Re-scheduling in railways: the rolling stock balancing problem," Econometric Institute Research Papers EI 2007-21, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Wagenaar, J.C. & Kroon, L.G. & Schmidt, M.E., 2016. "Maintenance Appointments in Railway Rolling Stock Rescheduling," ERIM Report Series Research in Management ERS-2016-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    19. Hoogervorst, R. & Dollevoet, T.A.B. & Maróti, G. & Huisman, D., 2018. "Reducing Passenger Delays by Rolling Stock Rescheduling," Econometric Institute Research Papers EI2018-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Wang, Dian & D’Ariano, Andrea & Zhao, Jun & Zhong, Qingwei & Peng, Qiyuan, 2022. "Integrated rolling stock deadhead routing and timetabling in urban rail transit lines," European Journal of Operational Research, Elsevier, vol. 298(2), pages 526-559.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:173:y:2023:i:c:p:292-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.