IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v171y2023icp29-43.html
   My bibliography  Save this article

Submodularity of optimal sensor placement for traffic networks

Author

Listed:
  • Li, Ruolin
  • Mehr, Negar
  • Horowitz, Roberto

Abstract

The need for monitoring the state of a traffic network versus the costly installation and maintenance of roadside sensors constitutes the tough sensor placement problem in designing transportation networks. Placement problems naturally lie in the category of subset selection problems, which are known to be inherently combinatorial, and therefore, finding their exact solution is intractable for large problems. Due to this intractability, numerous heuristics have been proposed in the literature for approximately solving placement problems for traffic networks. Among these approaches, it has been observed that greedy algorithms normally outperform other heuristics. In this paper, we show the mathematics of why greedy algorithms are appropriate proxies for solving these subset selection problems; similar to placement problems for linear systems, placement problems for traffic networks also normally have a submodular structure. In this work, we analyze the problem of road sensor placement for transportation networks under different information structures available: when no vehicle routing information is available, when vehicles’ routings are known, and when it is necessary to maximize the number of origin–destination (O/D) traffic flows that are monitored with a set of sensors. We show that in all these cases, the placement problem has a submodular monotone structure. It is well known that the submodularity and monotonicity of discrete optimization problems can be leveraged to derive greedy algorithms that approximate the optimal solution. Consequently, our result is of great practical importance since by exploiting the submodularity and monotonicity of a problem, we show that it is possible to use polynomial-time greedy algorithms to approximate the combinatorial optimization problem with guaranteed optimality bounds for large problems, which are intractable to solve otherwise. Our results shed light upon the success of heuristic greedy algorithms that have been developed in some of the literature for solving placement problems at scale. To demonstrate the applicability of submodular optimization for solving placement problems, we first compare the performance of our polynomial-time approximation algorithm with the true optimum in an example traffic network which is small enough for finding the exact optimal solution with enumerating all possible subsets. Then, we investigate and validate our submodular approach in a case study involving a large-scale traffic network in Berkeley, California, where finding the exact optimal solution is intractable. Submodularity of the placement problem in these scenarios provides a powerful computational tool which can be further extended to other placement problem formulations that can become a reference for solving similar problems in the transportation literature.

Suggested Citation

  • Li, Ruolin & Mehr, Negar & Horowitz, Roberto, 2023. "Submodularity of optimal sensor placement for traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 29-43.
  • Handle: RePEc:eee:transb:v:171:y:2023:i:c:p:29-43
    DOI: 10.1016/j.trb.2023.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261523000218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2023.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions - 1," LIDAM Reprints CORE 334, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Ehlert, Anett & Bell, Michael G.H. & Grosso, Sergio, 2006. "The optimisation of traffic count locations in road networks," Transportation Research Part B: Methodological, Elsevier, vol. 40(6), pages 460-479, July.
    3. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions," LIDAM Reprints CORE 341, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Xuesong Zhou & George F. List, 2010. "An Information-Theoretic Sensor Location Model for Traffic Origin-Destination Demand Estimation Applications," Transportation Science, INFORMS, vol. 44(2), pages 254-273, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyoshin (John) Park & Ali Haghani & Song Gao & Michael A. Knodler & Siby Samuel, 2018. "Anticipatory Dynamic Traffic Sensor Location Problems with Connected Vehicle Technologies," Service Science, INFORMS, vol. 52(6), pages 1299-1326, December.
    2. Mohit Singh & Weijun Xie, 2020. "Approximation Algorithms for D -optimal Design," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1512-1534, November.
    3. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    4. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    5. Salari, Mostafa & Kattan, Lina & Lam, William H.K. & Lo, H.P. & Esfeh, Mohammad Ansari, 2019. "Optimization of traffic sensor location for complete link flow observability in traffic network considering sensor failure," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 216-251.
    6. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    7. Majun Shi & Zishen Yang & Wei Wang, 2023. "Greedy Guarantees for Non-submodular Function Maximization Under Independent System Constraint with Applications," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 516-543, February.
    8. Rad Niazadeh & Negin Golrezaei & Joshua Wang & Fransisca Susan & Ashwinkumar Badanidiyuru, 2023. "Online Learning via Offline Greedy Algorithms: Applications in Market Design and Optimization," Management Science, INFORMS, vol. 69(7), pages 3797-3817, July.
    9. Mohammad Abouei Mehrizi & Federico Corò & Emilio Cruciani & Gianlorenzo D’Angelo, 2022. "Election control through social influence with voters’ uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 635-669, August.
    10. Eli Towle & James Luedtke, 2018. "New solution approaches for the maximum-reliability stochastic network interdiction problem," Computational Management Science, Springer, vol. 15(3), pages 455-477, October.
    11. Suning Gong & Qingqin Nong & Shuyu Bao & Qizhi Fang & Ding-Zhu Du, 2023. "A fast and deterministic algorithm for Knapsack-constrained monotone DR-submodular maximization over an integer lattice," Journal of Global Optimization, Springer, vol. 85(1), pages 15-38, January.
    12. Emily M. Craparo & Mumtaz Karatas & Tobias U. Kuhn, 2017. "Sensor placement in active multistatic sonar networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 287-304, June.
    13. Alexandre D. Jesus & Luís Paquete & Arnaud Liefooghe, 2021. "A model of anytime algorithm performance for bi-objective optimization," Journal of Global Optimization, Springer, vol. 79(2), pages 329-350, February.
    14. Oded Berman & Dmitry Krass & Mozart B. C. Menezes, 2007. "Facility Reliability Issues in Network p -Median Problems: Strategic Centralization and Co-Location Effects," Operations Research, INFORMS, vol. 55(2), pages 332-350, April.
    15. Hongjie Guo & Jianzhong Li & Hong Gao, 2022. "Data source selection for approximate query," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2443-2459, November.
    16. Bin Liu & Miaomiao Hu, 2022. "Fast algorithms for maximizing monotone nonsubmodular functions," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1655-1670, July.
    17. repec:dgr:rugsom:99a17 is not listed on IDEAS
    18. Klages-Mundt, Ariah & Minca, Andreea, 2022. "Optimal intervention in economic networks using influence maximization methods," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1136-1148.
    19. Xin Chen & Qingqin Nong & Yan Feng & Yongchang Cao & Suning Gong & Qizhi Fang & Ker-I Ko, 2017. "Centralized and decentralized rumor blocking problems," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 314-329, July.
    20. Lehmann, Daniel, 2020. "Quality of local equilibria in discrete exchange economies," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 141-152.
    21. Xin Sun & Gaidi Li & Yapu Zhang & Zhenning Zhang, 2022. "Private non-monotone submodular maximization," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3212-3232, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:171:y:2023:i:c:p:29-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.