IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v619y2023ics0378437123002522.html
   My bibliography  Save this article

A new anomalous travel demand prediction method combining Markov model and complex network model

Author

Listed:
  • Guo, Bao
  • Li, Minglun
  • Zhou, Mengnan
  • Zhang, Fan
  • Wang, Pu

Abstract

Accurate prediction of travel demand is crucial for the development of intelligent transportation systems. However, we are still lacking methods to predict travel demand in anomalous traffic conditions. In this study, we develop a new travel demand prediction method by combining Markov model and complex network model. First, the anomalous mobility network is generated and the anomalous mobility index is measured to quantify the anomaly of travel demand. Next, the time series matrix of the anomalous mobility indices is generated and integrated in the Markov chain model to predict travel demand. The proposed travel demand prediction method is compared with four benchmark models. Results indicate that the integration of Markov model and complex network model considerably improves the prediction accuracy of travel demand in anomalous traffic conditions.

Suggested Citation

  • Guo, Bao & Li, Minglun & Zhou, Mengnan & Zhang, Fan & Wang, Pu, 2023. "A new anomalous travel demand prediction method combining Markov model and complex network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
  • Handle: RePEc:eee:phsmap:v:619:y:2023:i:c:s0378437123002522
    DOI: 10.1016/j.physa.2023.128697
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123002522
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128697?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maity, Somnath & Sundar, S., 2022. "A coupled model for macroscopic behavior of crowd in flood induced evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    2. Yajun Zhou & Lilei Wang & Rong Zhong & Yulong Tan, 2018. "A Markov Chain Based Demand Prediction Model for Stations in Bike Sharing Systems," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-8, January.
    3. Liu, Peng & Zheng, Yanyan, 2022. "Temporal and spatial evolution of the distribution related to the number of COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    4. Huillet, Thierry E., 2011. "On a Markov chain model for population growth subject to rare catastrophic events," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4073-4086.
    5. Huang, Zhiren & Wang, Pu & Zhang, Fan & Gao, Jianxi & Schich, Maximilian, 2018. "A mobility network approach to identify and anticipate large crowd gatherings," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 147-170.
    6. Filippo Simini & Marta C. González & Amos Maritan & Albert-László Barabási, 2012. "A universal model for mobility and migration patterns," Nature, Nature, vol. 484(7392), pages 96-100, April.
    7. Yeon, Jiyoun & Elefteriadou, Lily & Lawphongpanich, Siriphong, 2008. "Travel time estimation on a freeway using Discrete Time Markov Chains," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 325-338, May.
    8. Büchel, Beda & Corman, Francesco, 2022. "Modeling conditional dependencies for bus travel time estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    9. Jin, Kun & Wang, Wei & Li, Xinran & Hua, Xuedong & Chen, Siyuan & Qin, Shaoyang, 2022. "Identifying the critical road combination in urban roads network under multiple disruption scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Li & Zhao, Juanjuan & Zhang, Jun & Zhang, Fan & Ye, Kejiang & Xu, Chengzhong, 2024. "Activity-based individual travel regularity exploring with entropy-space K-means clustering using smart card data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yitao & Jia, Bin & Yan, Xiao-Yong & Zhi, Danyue & Song, Dongdong & Chen, Yan & de Bok, Michiel & Tavasszy, Lóránt A. & Gao, Ziyou, 2023. "Uncovering and modeling the hierarchical organization of urban heavy truck flows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    2. Zhu, Kangli & Yin, Haodong & Qu, YunChao & Wu, Jianjun, 2021. "Group travel behavior in metro system and its relationship with house price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    3. Ramezani, Mohsen & Geroliminis, Nikolas, 2012. "On the estimation of arterial route travel time distribution with Markov chains," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1576-1590.
    4. Chen, Yanguang, 2023. "Demonstration of duality of fractal gravity models by scaling symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    5. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    6. Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.
    7. Varga, Levente & Tóth, Géza & Néda, Zoltán, 2017. "An improved radiation model and its applicability for understanding commuting patterns in Hungary," MPRA Paper 76806, University Library of Munich, Germany.
    8. Sgrignoli, Paolo & Metulini, Rodolfo & Schiavo, Stefano & Riccaboni, Massimo, 2015. "The relation between global migration and trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 245-260.
    9. James Truscott & Neil M Ferguson, 2012. "Evaluating the Adequacy of Gravity Models as a Description of Human Mobility for Epidemic Modelling," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
    10. Chen, Yong & Geng, Maosi & Zeng, Jiaqi & Yang, Di & Zhang, Lei & Chen, Xiqun (Michael), 2023. "A novel ensemble model with conditional intervening opportunities for ride-hailing travel mobility estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    11. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    12. Luo, Xiaohu & Caron, Justin & Karplus, Valerie J. & Zhang, Da & Zhang, Xiliang, 2016. "Interprovincial migration and the stringency of energy policy in China," Energy Economics, Elsevier, vol. 58(C), pages 164-173.
    13. Mark Thissen & Olga Ivanova & Giovanni Mandras & Trond Husby, 2019. "European NUTS 2 regions: construction of interregional trade-linked Supply and Use tables with consistent transport flows," JRC Working Papers on Territorial Modelling and Analysis 2019-01, Joint Research Centre.
    14. Thompson, C.A. & Saxberg, K. & Lega, J. & Tong, D. & Brown, H.E., 2019. "A cumulative gravity model for inter-urban spatial interaction at different scales," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    15. Gonzalo Suarez & Rachata Muneepeerakul, 2022. "Modeling human migration driven by changing mindset, agglomeration, social ties, and the environment," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-11, February.
    16. Rosita De Vincentis & Federico Karagulian & Carlo Liberto & Marialisa Nigro & Vincenza Rosati & Gaetano Valenti, 2022. "A Data-Driven Approach to Analyze Mobility Patterns and the Built Environment: Evidence from Brescia, Catania, and Salerno (Italy)," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
    17. Vinyas Harish & Felipe J. Colón-González & Filipe R. R. Moreira & Rory Gibb & Moritz U. G. Kraemer & Megan Davis & Robert C. Reiner & David M. Pigott & T. Alex Perkins & Daniel J. Weiss & Isaac I. Bog, 2024. "Human movement and environmental barriers shape the emergence of dengue," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Shao, Feng & Shao, Hu & Wang, Dongle & Lam, William H.K., 2024. "A multi-task spatio-temporal generative adversarial network for prediction of travel time reliability in peak hour periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    19. Qiang Tu & Han He & Xiaomin Lai & Chuan Jiang & Zhanji Zheng, 2024. "Identifying Critical Links in Degradable Road Networks Using a Traffic Demand-Based Indicator," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    20. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:619:y:2023:i:c:s0378437123002522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.