IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v89y2016icp151-163.html
   My bibliography  Save this article

Integrating the mean–variance and scheduling approaches to allow for schedule delay and trip time variability under uncertainty

Author

Listed:
  • Li, Hao
  • Tu, Huizhao
  • Hensher, David A.

Abstract

Uncertainty of travel times and the impact on travel choice behavior has been recognized as an increasingly important research direction in the past decade. This paper proposes an extension to the popular scheduling approach to model traveler’s departure time choice behavior under uncertainty, with the main focus on a richer representation of uncertainty. This more general approach incorporates a separate term to reflect the risk aversion associated with uncertainty. Recognizing the correlation between expected schedule delay and travel time variability, the schedule delay components in the generalized approach are defined in terms of expected travel time, which differs from the scheduling approach. This approach is developed based on the analytical investigation of the relationship between the expected schedule delay and the mean and standard deviation of travel time. An analytical equivalence was found between the scheduling approach and the general approach given a departure time t. To investigate the empirical performance of the generalized approach, two state preference (SP) data sets are used; one from China with a symmetric travel time distribution and the other from Australia with an asymmetric distribution. Both studies show empirical evidence of an equivalence in respect of statistical fit between the generalized and the scheduling approaches, as found from analytical investigations. The Chinese study gives support in the generalized model to including both the mean–variance and the scheduling effects; whereas the Australian study finds only the mean–variance specification has statistical merit. Despite the different travel contexts, it is noteworthy in both empirical settings, that the parameter estimate for arriving earlier than the preferred arrival time (PAT) in the generalized model is positive. This suggests that commuters tend to prefer to arrive earlier in order to guarantee he/she will not be late. This paper contributes to a better understanding of performances of different reliability measures and their relationships. The practical value of the various unreliability measures is provided showing that these indicators are easy to obtain for inclusion in project appraisal.

Suggested Citation

  • Li, Hao & Tu, Huizhao & Hensher, David A., 2016. "Integrating the mean–variance and scheduling approaches to allow for schedule delay and trip time variability under uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 151-163.
  • Handle: RePEc:eee:transa:v:89:y:2016:i:c:p:151-163
    DOI: 10.1016/j.tra.2016.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416303834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2016.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zheng & Hensher, David A. & Rose, John M., 2010. "Willingness to pay for travel time reliability in passenger transport: A review and some new empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 384-403, May.
    2. David A. Hensher & Zheng Li, 2012. "Valuing Travel Time Variability within a Rank-Dependent Utility Framework and an Investigation of Unobserved Taste Heterogeneity," Journal of Transport Economics and Policy, University of Bath, vol. 46(2), pages 293-312, May.
    3. Hao Li & Michiel C.J. Bliemer & Piet H.L. Bovy, 2009. "Reliability-based Dynamic Discrete Network Design with Stochastic Networks," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 651-673, Springer.
    4. Hollander, Yaron, 2006. "Direct versus indirect models for the effects of unreliability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(9), pages 699-711, November.
    5. Tu, Huizhao & Li, Hao & van Lint, Hans & van Zuylen, Henk, 2012. "Modeling travel time reliability of freeways using risk assessment techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1528-1540.
    6. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    7. Agachai Sumalee & Richard D. Connors & Paramet Luathep, 2009. "Network Equilibrium under Cumulative Prospect Theory and Endogenous Stochastic Demand and Supply," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 19-38, Springer.
    8. Noland, Robert B. & Small, Kenneth A. & Koskenoja, Pia Maria & Chu, Xuehao, 1998. "Simulating travel reliability," Regional Science and Urban Economics, Elsevier, vol. 28(5), pages 535-564, September.
    9. Erik Verhoef & Michiel C.J. Bliemer & Linda Steg & Bert van Wee (ed.), 2008. "Pricing in Road Transport," Books, Edward Elgar Publishing, number 4192.
    10. Dirk van Amelsfort & Piet Bovy & Michiel Bliemer & Barry Ubbels, 2008. "Travellers’ Responses to Road Pricing: Value of Time, Schedule Delay and Unreliability," Chapters, in: Erik Verhoef & Michiel C.J. Bliemer & Linda Steg & Bert van Wee (ed.), Pricing in Road Transport, chapter 4, Edward Elgar Publishing.
    11. Bates, John & Polak, John & Jones, Peter & Cook, Andrew, 0. "The valuation of reliability for personal travel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(2-3), pages 191-229, April.
    12. Zheng Li & Alejandro Tirachini & David A. Hensher, 2012. "Embedding Risk Attitudes in a Scheduling Model: Application to the Study of Commuting Departure Time," Transportation Science, INFORMS, vol. 46(2), pages 170-188, May.
    13. Donald P. Gaver, 1968. "Headstart Strategies for Combating Congestion," Transportation Science, INFORMS, vol. 2(2), pages 172-181, May.
    14. Fosgerau, Mogens, 2010. "On the relation between the mean and variance of delay in dynamic queues with random capacity and demand," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 598-603, April.
    15. Rose, John M. & Bliemer, Michiel C.J. & Hensher, David A. & Collins, Andrew T., 2008. "Designing efficient stated choice experiments in the presence of reference alternatives," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 395-406, May.
    16. de Palma, André & Picard, Nathalie, 2005. "Route choice decision under travel time uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(4), pages 295-324, May.
    17. Batley, Richard, 2007. "Marginal valuations of travel time and scheduling, and the reliability premium," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(4), pages 387-408, July.
    18. Hensher,David A. & Rose,John M. & Greene,William H., 2015. "Applied Choice Analysis," Cambridge Books, Cambridge University Press, number 9781107465923, September.
    19. de Jong, Gerard C. & Bliemer, Michiel C.J., 2015. "On including travel time reliability of road traffic in appraisal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 80-95.
    20. Erel Avineri & Joseph Prashker, 2006. "The Impact of Travel Time Information on Travelers’ Learning under Uncertainty," Transportation, Springer, vol. 33(4), pages 393-408, July.
    21. Hensher, David A. & Greene, William H. & Li, Zheng, 2011. "Embedding risk attitude and decision weights in non-linear logit to accommodate time variability in the value of expected travel time savings," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 954-972, August.
    22. Fosgerau, Mogens & Karlström, Anders, 2010. "The value of reliability," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 38-49, January.
    23. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    24. Robert B. Noland & John W. Polak, 2002. "Travel time variability: A review of theoretical and empirical issues," Transport Reviews, Taylor & Francis Journals, vol. 22(1), pages 39-54, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zheng & Hensher, David A. & Rose, John M., 2010. "Willingness to pay for travel time reliability in passenger transport: A review and some new empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 384-403, May.
    2. Khademi, Navid & Kharrazi, Hamed & Chen, Anthony & Chaiyasarn, Krisada & Zerguini, Seghir, 2024. "Departure time choices and a modeling framework for a guidance system," Journal of choice modelling, Elsevier, vol. 51(C).
    3. Yu, Xiaojuan & van den Berg, Vincent A.C. & Li, Zhi-Chun, 2023. "Congestion pricing and information provision under uncertainty: Responsive versus habitual pricing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    4. Li, Hao & Yu, Lu & Chen, Yu & Tu, Huizhao & Zhang, Jun, 2023. "Uncertainty of available range in explaining the charging choice behavior of BEV users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    5. Gurmesh Sihag & Praveen Kumar & Manoranjan Parida, 2023. "Development of a Machine-Learning-Based Novel Framework for Travel Time Distribution Determination Using Probe Vehicle Data," Data, MDPI, vol. 8(3), pages 1-18, March.
    6. Liu, Qiumin & Jiang, Rui & Liu, Ronghui & Zhao, Hui & Gao, Ziyou, 2020. "Travel cost budget based user equilibrium in a bottleneck model with stochastic capacity," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 1-37.
    7. Yap, Menno & Cats, Oded, 2021. "Taking the path less travelled: Valuation of denied boarding in crowded public transport systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 1-13.
    8. Li, Hao & Gao, Kun & Tu, Huizhao, 2017. "Variations in mode-specific valuations of travel time reliability and in-vehicle crowding: Implications for demand estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 250-263.
    9. Fu, Jianhua & Zhang, Yongqing, 2020. "Valuation of travel time reliability: Considering the traveler's adaptive expectation with an indifference band on daily trip duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 337-353.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    2. Xiao, Yu & Coulombel, Nicolas & Palma, André de, 2017. "The valuation of travel time reliability: does congestion matter?," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 113-141.
    3. Nicolas Coulombel & André de Palma, 2014. "The marginal social cost of travel time variability," Post-Print hal-01100105, HAL.
    4. Beaud, Mickael & Blayac, Thierry & Stéphan, Maïté, 2016. "The impact of travel time variability and travelers’ risk attitudes on the values of time and reliability," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 207-224.
    5. Zheng Li & Alejandro Tirachini & David A. Hensher, 2012. "Embedding Risk Attitudes in a Scheduling Model: Application to the Study of Commuting Departure Time," Transportation Science, INFORMS, vol. 46(2), pages 170-188, May.
    6. Carrion, Carlos & Levinson, David, 2012. "Value of travel time reliability: A review of current evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 720-741.
    7. Zhaoqi Zang & Richard Batley & Xiangdong Xu & David Z. W. Wang, 2022. "On the value of distribution tail in the valuation of travel time variability," Papers 2207.06293, arXiv.org, revised Dec 2023.
    8. Wang, Qian & Sundberg, Marcus & Karlström, Anders, 2013. "Scheduling choices under rank dependent utility maximization," Working papers in Transport Economics 2013:16, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    9. Dixit, Vinayak V. & Harb, Rami C. & Martínez-Correa, Jimmy & Rutström, Elisabet E., 2015. "Measuring risk aversion to guide transportation policy: Contexts, incentives, and respondents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 15-34.
    10. Li, Zheng, 2018. "Unobserved and observed heterogeneity in risk attitudes: Implications for valuing travel time savings and travel time variability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 12-18.
    11. Mickaël Beaud & Thierry Blayac & Maïté Stéphan, 2014. "Measurements and properties of the values of time and reliability," Working Papers 14-06, LAMETA, Universtiy of Montpellier, revised Jul 2014.
    12. Paul Koster & Eric Pels & Erik Verhoef, 2016. "The User Costs of Air Travel Delay Variability," Transportation Science, INFORMS, vol. 50(1), pages 120-131, February.
    13. Wijayaratna, Kasun P. & Dixit, Vinayak V., 2016. "Impact of information on risk attitudes: Implications on valuation of reliability and information," Journal of choice modelling, Elsevier, vol. 20(C), pages 16-34.
    14. Benezech, Vincent & Coulombel, Nicolas, 2013. "The value of service reliability," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 1-15.
    15. Li, Baibing, 2019. "Measuring travel time reliability and risk: A nonparametric approach," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 152-171.
    16. Gao, Kun & Sun, Lijun & Yang, Ying & Meng, Fanyu & Qu, Xiaobo, 2021. "Cumulative prospect theory coupled with multi-attribute decision making for modeling travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 1-21.
    17. Siu, Barbara W.Y. & Lo, Hong K., 2008. "Doubly uncertain transportation network: Degradable capacity and stochastic demand," European Journal of Operational Research, Elsevier, vol. 191(1), pages 166-181, November.
    18. Batley, Richard & Ibáñez, J. Nicolás, 2012. "Randomness in preference orderings, outcomes and attribute tastes: An application to journey time risk," Journal of choice modelling, Elsevier, vol. 5(3), pages 157-175.
    19. Fu, Jianhua & Zhang, Yongqing, 2020. "Valuation of travel time reliability: Considering the traveler's adaptive expectation with an indifference band on daily trip duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 337-353.
    20. Zheng Li & David Hensher, 2013. "Behavioural implications of preferences, risk attitudes and beliefs in modelling risky travel choice with travel time variability," Transportation, Springer, vol. 40(3), pages 505-523, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:89:y:2016:i:c:p:151-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.