IDEAS home Printed from https://ideas.repec.org/p/jgu/wpaper/1902.html
   My bibliography  Save this paper

Schedule-Based Integrated Inter-City Bus Line Planning for Multiple Timetabled Services via Large Multiple Neighborhood Search

Author

Listed:
  • Konrad Steiner

    (A.T. Kearney GmbH, Johannes Gutenberg University)

Abstract

This work addresses line planning for inter-city bus networks, which requires a high level of integration with other planning steps. One key reason is given by passengers choosing a speci?c timetabled service rather than just a line, as is typically the case in urban transportation. Schedule-based modeling approaches are required to incorporate this aspect, i.e., demand is assigned to a speci?c timetabled service. Furthermore, in liberalized markets, there is usually ?erce competition within and across modes. This encourages considering dynamic demand, i.e., not relying on static demand values, but adjusting them based on the trip characteristics. We provide a schedule-based mixed-integer model formulation allowing a bus operator to optimize multiple timetabled services in a travel corridor with simultaneous decisions on both departure time and which stations to serve. The demand behaves dynamically with respect to departure time, trip duration, trip frequency, and cannibalization. To solve this new problem formulation, we introduce a large multiple neighborhood search (LMNS) as an overall metaheuristic approach, together with multiple variations including matheuristics. Applying the LMNS algorithm, we solve instances based on real-world data from the German market. Computation times are attractive and the high quality of the solutions is con?rmed by analyzing examples with known optimal solutions. Moreover, we show that the explicit consideration of the dependencies between the di?erent timetabled services often produces insightful new results that di?er from approaches which only focus on a single service.

Suggested Citation

  • Konrad Steiner, 2019. "Schedule-Based Integrated Inter-City Bus Line Planning for Multiple Timetabled Services via Large Multiple Neighborhood Search," Working Papers 1902, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
  • Handle: RePEc:jgu:wpaper:1902
    as

    Download full text from publisher

    File URL: https://download.uni-mainz.de/RePEc/pdf/Discussion_Paper_1902.pdf
    File Function: First version, 2019
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Pisinger & Stefan Ropke, 2010. "Large Neighborhood Search," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 399-419, Springer.
    2. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    3. Cascetta, Ennio & Coppola, Pierluigi, 2016. "Assessment of schedule-based and frequency-based assignment models for strategic and operational planning of high-speed rail services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 84(C), pages 93-108.
    4. Alberto Santini & Stefan Ropke & Lars Magnus Hvattum, 2018. "A comparison of acceptance criteria for the adaptive large neighbourhood search metaheuristic," Journal of Heuristics, Springer, vol. 24(5), pages 783-815, October.
    5. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    6. Hintsch, Timo & Irnich, Stefan, 2018. "Large multiple neighborhood search for the clustered vehicle-routing problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 118-131.
    7. Konrad Steiner & Stefan Irnich, 2018. "Schedule-Based Integrated Intercity Bus Line Planning via Branch-and-Cut," Transportation Science, INFORMS, vol. 52(4), pages 882-897, August.
    8. Renaud Masson & Fabien Lehuédé & Olivier Péton, 2013. "An Adaptive Large Neighborhood Search for the Pickup and Delivery Problem with Transfers," Transportation Science, INFORMS, vol. 47(3), pages 344-355, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turkeš, Renata & Sörensen, Kenneth & Hvattum, Lars Magnus, 2021. "Meta-analysis of metaheuristics: Quantifying the effect of adaptiveness in adaptive large neighborhood search," European Journal of Operational Research, Elsevier, vol. 292(2), pages 423-442.
    2. Timo Hintsch, 2019. "Large Multiple Neighborhood Search for the Soft-Clustered Vehicle-Routing Problem," Working Papers 1904, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    3. Hatzenbühler, Jonas & Jenelius, Erik & Gidófalvi, Gyözö & Cats, Oded, 2023. "Modular vehicle routing for combined passenger and freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    4. Timo Gschwind & Michael Drexl, 2016. "Adaptive Large Neighborhood Search with a Constant-Time Feasibility Test for the Dial-a-Ride Problem," Working Papers 1624, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    5. Michael Drexl, 2018. "On the One-to-One Pickup-and-Delivery Problem with Time Windows and Trailers," Working Papers 1816, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    6. Lena Hörsting & Catherine Cleophas, 2023. "Integrating Micro-Depot Freight Transport in Existing Public Transport Services," SN Operations Research Forum, Springer, vol. 4(3), pages 1-35, September.
    7. Dalmau, Ramon & Gawinowski, Gilles & Anoraud, Camille, 2022. "Comparison of various temporal air traffic flow management models in critical scenarios," Journal of Air Transport Management, Elsevier, vol. 105(C).
    8. Liu, Chuanju & Zhang, Junlong & Lin, Shaochong & Shen, Zuo-Jun Max, 2023. "Service network design with consistent multiple trips," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    9. TURKEŠ, Renata & SÖRENSEN, Kenneth & HVATTUM, Lars Magnus & BARRENA, Eva & CHENTLI, Hayet & COELHO, Leandro & DAYARIAN, Iman & GRIMAULT, Axel & GULLHAVE, Anders & IRIS, Çagatay & KESKIN, Merve & KIEFE, 2019. "Meta-analysis of metaheuristics: Quantifying the effect of adaptiveness in adaptive large neighborhood search," Working Papers 2019002, University of Antwerp, Faculty of Business and Economics.
    10. Santos, Maria João & Curcio, Eduardo & Mulati, Mauro Henrique & Amorim, Pedro & Miyazawa, Flávio Keidi, 2020. "A robust optimization approach for the vehicle routing problem with selective backhauls," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    11. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    12. Yin, Jiateng & D’Ariano, Andrea & Wang, Yihui & Yang, Lixing & Tang, Tao, 2021. "Timetable coordination in a rail transit network with time-dependent passenger demand," European Journal of Operational Research, Elsevier, vol. 295(1), pages 183-202.
    13. Masmoudi, Mohamed Amine & Hosny, Manar & Braekers, Kris & Dammak, Abdelaziz, 2016. "Three effective metaheuristics to solve the multi-depot multi-trip heterogeneous dial-a-ride problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 60-80.
    14. Timo Gschwind & Michael Drexl, 2019. "Adaptive Large Neighborhood Search with a Constant-Time Feasibility Test for the Dial-a-Ride Problem," Transportation Science, INFORMS, vol. 53(2), pages 480-491, March.
    15. Bach, Lukas & Hasle, Geir & Schulz, Christian, 2019. "Adaptive Large Neighborhood Search on the Graphics Processing Unit," European Journal of Operational Research, Elsevier, vol. 275(1), pages 53-66.
    16. Ulrike Ritzinger & Jakob Puchinger & Richard Hartl, 2016. "Dynamic programming based metaheuristics for the dial-a-ride problem," Annals of Operations Research, Springer, vol. 236(2), pages 341-358, January.
    17. Dumez, Dorian & Lehuédé, Fabien & Péton, Olivier, 2021. "A large neighborhood search approach to the vehicle routing problem with delivery options," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 103-132.
    18. Daniela Guericke & Leena Suhl, 2017. "The home health care problem with working regulations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 977-1010, October.
    19. Guido, Rosita & Groccia, Maria Carmela & Conforti, Domenico, 2018. "An efficient matheuristic for offline patient-to-bed assignment problems," European Journal of Operational Research, Elsevier, vol. 268(2), pages 486-503.
    20. Frey, Christian M.M. & Jungwirth, Alexander & Frey, Markus & Kolisch, Rainer, 2023. "The vehicle routing problem with time windows and flexible delivery locations," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1142-1159.

    More about this item

    Keywords

    integration; schedule-based modeling; inter-city bus transportation; dynamic demand; large multiple neighborhood search LMNS;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jgu:wpaper:1902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Research Unit IPP (email available below). General contact details of provider: https://edirc.repec.org/data/vlmaide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.