IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v49y2013icp232-240.html
   My bibliography  Save this article

Modeling pedestrian queuing using micro-simulation

Author

Listed:
  • Kim, Inhi
  • Galiza, Ronald
  • Ferreira, Luis

Abstract

The system considered is a cinema ticketing booth system. A general simulation algorithm is presented as well as the system’s operating characteristics. The results of the experiment were verified by comparing them with video observation data and theoretical values. Finally, with comparative analysis of experiment data, the developed simulation model was able to replicate the situation in which pedestrians find an available booth to occupy while waiting in a queue. The model can facilitate the availability of various pedestrian flows and a range of operating times. With some efforts of computer programming, the situations where multiple booths are available were simulated to identify pedestrian movement. The developed simulation model captures important details, such as travel time, wait time, queue length and the number of waiting pedestrians with the different number of pedestrian flows and booths. The paper presents a means to designing the pedestrian operation and plan on the basis of the estimated number of people.

Suggested Citation

  • Kim, Inhi & Galiza, Ronald & Ferreira, Luis, 2013. "Modeling pedestrian queuing using micro-simulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 232-240.
  • Handle: RePEc:eee:transa:v:49:y:2013:i:c:p:232-240
    DOI: 10.1016/j.tra.2013.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856413000256
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2013.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
    2. Løvås, Gunnar G., 1994. "Modeling and simulation of pedestrian traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 28(6), pages 429-443, December.
    3. Lee, Jodie Y.S. & Lam, William H.K., 2008. "Simulating pedestrian movements at signalized crosswalks in Hong Kong," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1314-1325, December.
    4. Jahangirian, Mohsen & Eldabi, Tillal & Naseer, Aisha & Stergioulas, Lampros K. & Young, Terry, 2010. "Simulation in manufacturing and business: A review," European Journal of Operational Research, Elsevier, vol. 203(1), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Pei-Yang & Guo, Ren-Yong, 2021. "Simulation of pedestrian flows through queues: Effect of interaction and intersecting angle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    2. Mohammad Annas, 2017. "Modern Hypermarket Receiving Yard Utilization: The Implementation of a Simulation Model," GATR Journals jber147, Global Academy of Training and Research (GATR) Enterprise.
    3. Li, Wenhang & Gong, Jianhua & Yu, Ping & Shen, Shen & Li, Rong & Duan, Qishen, 2015. "Simulation and analysis of congestion risk during escalator transfers using a modified social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 28-40.
    4. Seungho Yang & Tanvir Uddin Chowdhury & Ahmad Mohammadi & Peter Y. Park, 2022. "Development of a Method for Evaluating Social Distancing Situations on Urban Streets during a Pandemic," Sustainability, MDPI, vol. 14(14), pages 1-11, July.
    5. Li, Jialin & Sun, Zijie & Zhang, Yaping, 2024. "Study on departure passenger movement during security check process at airport terminal based on an improved cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    6. Zeyang Cheng & Jian Lu & Yi Zhao, 2020. "Pedestrian Evacuation Risk Assessment of Subway Station under Large-Scale Sport Activity," IJERPH, MDPI, vol. 17(11), pages 1-15, May.
    7. Li, Wenhang & Li, Yi & Yu, Ping & Gong, Jianhua & Fan, Hongkui & Zhang, Dong & Huang, Lin & Zhang, Guoyong, 2022. "Modeling orderly queuing behavior with bending effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 601(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Wankmüller & Maximilian Kunovjanek & Robert Gennaro Sposato & Gerald Reiner, 2020. "Selecting E-Mobility Transport Solutions for Mountain Rescue Operations," Energies, MDPI, vol. 13(24), pages 1-19, December.
    2. Thomas Vempiliyath & Maitri Thakur & Vincent Hargaden, 2021. "Development of a Hybrid Simulation Framework for the Production Planning Process in the Atlantic Salmon Supply Chain," Agriculture, MDPI, vol. 11(10), pages 1-17, September.
    3. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    4. Opacic, Luke & Sowlati, Taraneh & Mobini, Mahdi, 2018. "Design and development of a simulation-based decision support tool to improve the production process at an engineered wood products mill," International Journal of Production Economics, Elsevier, vol. 199(C), pages 209-219.
    5. Bouslah, B. & Gharbi, A. & Pellerin, R., 2016. "Integrated production, sampling quality control and maintenance of deteriorating production systems with AOQL constraint," Omega, Elsevier, vol. 61(C), pages 110-126.
    6. Flötteröd, Gunnar & Lämmel, Gregor, 2015. "Bidirectional pedestrian fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 194-212.
    7. Maxim A. Maron, 2018. "Diagnostics of Projects," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 18-30.
    8. Navonil Mustafee & Korina Katsaliaki & Paul Fishwick, 2014. "Exploring the modelling and simulation knowledge base through journal co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 2145-2159, March.
    9. Lili Lu, A. & Gang Ren, B. & Wei Wang, C. & Ching-Yao Chan, D., 2015. "Application of SFCA pedestrian simulation model to the signalized crosswalk width design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 76-89.
    10. Deepa Mishra & Sameer Kumar & Elkafi Hassini, 2019. "Current trends in disaster management simulation modelling research," Annals of Operations Research, Springer, vol. 283(1), pages 1387-1411, December.
    11. Christian Wankmüller & Gerald Reiner, 2020. "Coordination, cooperation and collaboration in relief supply chain management," Journal of Business Economics, Springer, vol. 90(2), pages 239-276, March.
    12. Andreas Felsberger & Gerald Reiner, 2020. "Sustainable Industry 4.0 in Production and Operations Management: A Systematic Literature Review," Sustainability, MDPI, vol. 12(19), pages 1-39, September.
    13. Linnéusson, Gary & Ng, Amos H.C. & Aslam, Tehseen, 2020. "A hybrid simulation-based optimization framework supporting strategic maintenance development to improve production performance," European Journal of Operational Research, Elsevier, vol. 281(2), pages 402-414.
    14. Diego Tlapa & Ignacio Franco-Alucano & Jorge Limon-Romero & Yolanda Baez-Lopez & Guilherme Tortorella, 2022. "Lean, Six Sigma, and Simulation: Evidence from Healthcare Interventions," Sustainability, MDPI, vol. 14(24), pages 1-25, December.
    15. Arreola-Risa, Antonio & Giménez-García, Víctor M. & Martínez-Parra, José Luis, 2011. "Optimizing stochastic production-inventory systems: A heuristic based on simulation and regression analysis," European Journal of Operational Research, Elsevier, vol. 213(1), pages 107-118, August.
    16. Mielczarek, Bożena & Zabawa, Jacek, 2021. "Modelling demographic changes using simulation: Supportive analyses for socioeconomic studies," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
    17. Oleg V. Pavlov & Evangelos Katsamakas, 2024. "Tuition too high? Blame competition," Papers 2405.17762, arXiv.org.
    18. Hänseler, Flurin S. & Bierlaire, Michel & Farooq, Bilal & Mühlematter, Thomas, 2014. "A macroscopic loading model for time-varying pedestrian flows in public walking areas," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 60-80.
    19. Brailsford, Sally C. & Eldabi, Tillal & Kunc, Martin & Mustafee, Navonil & Osorio, Andres F., 2019. "Hybrid simulation modelling in operational research: A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 278(3), pages 721-737.
    20. Julian Krumeich & Dirk Werth & Peter Loos, 2016. "Prescriptive Control of Business Processes," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 58(4), pages 261-280, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:49:y:2013:i:c:p:232-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.