IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v46y2012i10p1623-1640.html
   My bibliography  Save this article

Comparative performance of alternative humanitarian logistic structures after the Port-au-Prince earthquake: ACEs, PIEs, and CANs

Author

Listed:
  • Holguín-Veras, José
  • Jaller, Miguel
  • Wachtendorf, Tricia

Abstract

The paper analyzes the performance of different post-disaster humanitarian logistic structures that arose in response to the Port-au-Prince earthquake of January 12th, 2010. Based on field work conducted by the authors, the paper defines a typology of structures; assesses their relative performance in terms of delivering relief aid; and identifies the causes that explain the differences between them. Three structures are defined for comparative purposes: Agency Centric Efforts (ACEs), Partially Integrated Efforts (PIEs), and Collaborative Aid Networks (CANs). These structures differ to the extent to which they are integrated with the local social networks during the relief effort. Representative examples were analyzed to illustrate their inherent strengths and weaknesses, and reach conclusions of general applicability. The authors strengthen the analyses with discussions of “comparables,” i.e., other cases not fully discussed in the paper that shed additional light onto the performance of the structures.

Suggested Citation

  • Holguín-Veras, José & Jaller, Miguel & Wachtendorf, Tricia, 2012. "Comparative performance of alternative humanitarian logistic structures after the Port-au-Prince earthquake: ACEs, PIEs, and CANs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1623-1640.
  • Handle: RePEc:eee:transa:v:46:y:2012:i:10:p:1623-1640
    DOI: 10.1016/j.tra.2012.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856412001322
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2012.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Stephanie E. & Nojima, Nobuoto, 2001. "Measuring post-disaster transportation system performance: the 1995 Kobe earthquake in comparative perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(6), pages 475-494, July.
    2. Urbina, Elba & Wolshon, Brian, 2003. "National review of hurricane evacuation plans and policies: a comparison and contrast of state practices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(3), pages 257-275, March.
    3. Haghani, Ali & Oh, Sei-Chang, 1996. "Formulation and solution of a multi-commodity, multi-modal network flow model for disaster relief operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(3), pages 231-250, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruni, M.E. & Khodaparasti, S. & Beraldi, P., 2020. "The selective minimum latency problem under travel time variability: An application to post-disaster assessment operations," Omega, Elsevier, vol. 92(C).
    2. Maria Drakaki & Gyöngyi Kovács & Panagiotis Tzionas, 2023. "No one stands alone: partnerships for community resilience," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1433-1462, March.
    3. Nagurney, Anna & Flores, Emilio Alvarez & Soylu, Ceren, 2016. "A Generalized Nash Equilibrium network model for post-disaster humanitarian relief," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 1-18.
    4. Loree, Nick & Aros-Vera, Felipe, 2018. "Points of distribution location and inventory management model for Post-Disaster Humanitarian Logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 1-24.
    5. Shaoqing Geng & Hanping Hou & Shaoguang Zhang, 2020. "Multi-Criteria Location Model of Emergency Shelters in Humanitarian Logistics," Sustainability, MDPI, vol. 12(5), pages 1-21, February.
    6. Holguín-Veras, José & Taniguchi, Eiichi & Jaller, Miguel & Aros-Vera, Felipe & Ferreira, Frederico & Thompson, Russell G., 2014. "The Tohoku disasters: Chief lessons concerning the post disaster humanitarian logistics response and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 86-104.
    7. Allahviranloo, Mahdieh & Chow, Joseph Y.J. & Recker, Will W., 2014. "Selective vehicle routing problems under uncertainty without recourse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 68-88.
    8. Rodríguez-Espíndola, Oscar & Albores, Pavel & Brewster, Christopher, 2018. "Disaster preparedness in humanitarian logistics: A collaborative approach for resource management in floods," European Journal of Operational Research, Elsevier, vol. 264(3), pages 978-993.
    9. Sarah Schiffling & Claire Hannibal & Matthew Tickle & Yiyi Fan, 2022. "The implications of complexity for humanitarian logistics: a complex adaptive systems perspective," Annals of Operations Research, Springer, vol. 319(1), pages 1379-1410, December.
    10. Amaya, Johanna & Serrano, Ivan & Cantillo, Víctor & Arellana, Julián & Pérez, Cinthia C., 2024. "Implications of trust, preparedness, risk perceptions, and local context on deprivation costs and disaster relief planning," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    11. Luis Ballesteros & Aline Gatignon, 2019. "The relative value of firm and nonprofit experience: Tackling large‐scale social issues across institutional contexts," Strategic Management Journal, Wiley Blackwell, vol. 40(4), pages 631-657, April.
    12. Goulding, Christina & Kelemen, Mihaela & Kiyomiya, Toru, 2018. "Community based response to the Japanese tsunami: A bottom-up approach," European Journal of Operational Research, Elsevier, vol. 268(3), pages 887-903.
    13. Hossein Baharmand & Diego Vega & Matthieu Lauras & Tina Comes, 2022. "A methodology for developing evidence-based optimization models in humanitarian logistics," Annals of Operations Research, Springer, vol. 319(1), pages 1197-1229, December.
    14. Jeong, Ho Young & Yu, David J. & Min, Byung-Cheol & Lee, Seokcheon, 2020. "The humanitarian flying warehouse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    15. Xiangyang Guan & Cynthia Chen, 2014. "Using social media data to understand and assess disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 837-850, November.
    16. Liao, Haiyan & Holguín-Veras, José & Calderón, Oriana, 2023. "Comparative analysis of the performance of humanitarian logistic structures using agent-based simulation," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    17. Charbel José Chiappetta Jabbour & Vinicius Amorim Sobreiro & Ana Beatriz Lopes de Sousa Jabbour & Lucila Maria Souza Campos & Enzo Barberio Mariano & Douglas William Scott Renwick, 2019. "An analysis of the literature on humanitarian logistics and supply chain management: paving the way for future studies," Annals of Operations Research, Springer, vol. 283(1), pages 289-307, December.
    18. Das, Rubel & Hanaoka, Shinya, 2014. "Relief inventory modelling with stochastic lead-time and demand," European Journal of Operational Research, Elsevier, vol. 235(3), pages 616-623.
    19. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    20. Pérez-Galarce, Francisco & Canales, Linda J. & Vergara, Claudio & Candia-Véjar, Alfredo, 2017. "An optimization model for the location of disaster refuges," Socio-Economic Planning Sciences, Elsevier, vol. 59(C), pages 56-66.
    21. Balster, Andreas & Friedrich, Hanno, 2019. "Dynamic freight flow modelling for risk evaluation in food supply," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 121(C), pages 4-22.
    22. Liu, Kanglin & Zhang, Hengliang & Zhang, Zhi-Hai, 2021. "The efficiency, equity and effectiveness of location strategies in humanitarian logistics: A robust chance-constrained approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    23. Oscar Rodríguez-Espíndola, 2023. "Two-stage stochastic formulation for relief operations with multiple agencies in simultaneous disasters," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(2), pages 477-523, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    2. Juan Rivera & H. Afsar & Christian Prins, 2015. "A multistart iterated local search for the multitrip cumulative capacitated vehicle routing problem," Computational Optimization and Applications, Springer, vol. 61(1), pages 159-187, May.
    3. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    4. Fuyu Wang & Xuefei Ge & Yan Li & Jingjing Zheng & Weichen Zheng, 2023. "Optimising the Distribution of Multi-Cycle Emergency Supplies after a Disaster," Sustainability, MDPI, vol. 15(2), pages 1-26, January.
    5. Amin, Shohel & Tamima, Umma & Amador-Jiménez, Luis E., 2019. "Optimal pavement management: Resilient roads in support of emergency response of cyclone affected coastal areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 45-61.
    6. Bas Kolen & Matthijs Kok & Ira Helsloot & Bob Maaskant, 2013. "EvacuAid: A Probabilistic Model to Determine the Expected Loss of Life for Different Mass Evacuation Strategies During Flood Threats," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1312-1333, July.
    7. Wang, Haijun & Du, Lijing & Ma, Shihua, 2014. "Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 160-179.
    8. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    9. Firas Rifai, 2018. "Transfer of Knowhow and Experiences from Commercial Logistics into Humanitarian Logistics to Improve Rescue Missions in Disaster Areas," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 8(3), pages 1-63, August.
    10. Mohammad Mojtahedi & Sidney Newton & Jason Meding, 2017. "Predicting the resilience of transport infrastructure to a natural disaster using Cox’s proportional hazards regression model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1119-1133, January.
    11. Eva D. Regnier, 2020. "What Is Six Hours Worth? The Impact of Lead Time on Tropical-Storm Preparation Decisions," Decision Analysis, INFORMS, vol. 17(1), pages 9-23, March.
    12. Rahimi-Golkhandan, Armin & Garvin, Michael J. & Brown, Bryan L., 2019. "Characterizing and measuring transportation infrastructure diversity through linkages with ecological stability theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 114-130.
    13. Dilsu Binnaz Ozkapici & Mustafa Alp Ertem & Haluk Aygüneş, 2016. "Intermodal humanitarian logistics model based on maritime transportation in Istanbul," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 345-364, August.
    14. Praveen Maghelal & Xiangyu Li & Walter Gillis Peacock, 2017. "Highway congestion during evacuation: examining the household’s choice of number of vehicles to evacuate," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1399-1411, July.
    15. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    16. Nazmul Arefin Khan & Muhammad Ahsanul Habib, 2018. "Evaluation of Preferences for Alternative Transportation Services and Loyalty towards Active Transportation during a Major Transportation Infrastructure Disruption," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
    17. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    18. Laure Rousset & César Ducruet, 2020. "Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns," Networks and Spatial Economics, Springer, vol. 20(2), pages 423-447, June.
    19. H. Klammler & P. S. C. Rao & K. Hatfield, 2018. "Modeling dynamic resilience in coupled technological-social systems subjected to stochastic disturbance regimes," Environment Systems and Decisions, Springer, vol. 38(1), pages 140-159, March.
    20. He, Sylvia Y. & Tao, Sui & Sun, Ka Kit, 2024. "Attitudes towards public transport under extended disruptions and massive-scale transit dysfunction: A Hong Kong case study," Transport Policy, Elsevier, vol. 149(C), pages 247-258.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:46:y:2012:i:10:p:1623-1640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.