IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v40y2006i5p375-385.html
   My bibliography  Save this article

Evaluating speed consistency between successive elements of a two-lane rural highway

Author

Listed:
  • Park, Young-Jin
  • Saccomanno, Frank F.

Abstract

The V85 speed reflects the 85th percentile speed of vehicles in a traffic stream passing a given element on the highway section. The large amount of speed differential in V85 between the two successive elements along a highway reflects lack of speed consistency in the highway section. This lack of speed consistency can result in increased crash risk. Recent research points to several problems associated with the conventional method of measuring [Delta]V85 between successive highway elements: (1) failure to reflect individual vehicle speed profiles; and (2) failure to account for inter-dependence in individual vehicle speeds between successive elements. These problems have serious implications for justifying safety treatment when conventional [Delta]V85 measure is applied. A number of researchers have suggested that the estimated speed differential based on individual vehicle speed profiles in successive elements is significantly higher than that obtained using the conventional approach. In this paper, we assess the safety implications of using the conventional [Delta]V85 and introduce a hierarchical model for considering individual vehicles speed consistency. These findings lead to important implications for introducing engineering treatments to improve safety along in two-lane rural highways based on the criteria of speed consistency.

Suggested Citation

  • Park, Young-Jin & Saccomanno, Frank F., 2006. "Evaluating speed consistency between successive elements of a two-lane rural highway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(5), pages 375-385, June.
  • Handle: RePEc:eee:transa:v:40:y:2006:i:5:p:375-385
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(05)00106-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shankar, Venkataraman & Mannering, Fred, 1998. "Modeling the endogeneity of lane-mean speeds and lane-speed deviations: a structural equations approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(5), pages 311-322, September.
    2. Papola, Andrea, 2004. "Some developments on the cross-nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 38(9), pages 833-851, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tremblay, Jean-Michel & Cirillo, Cinzia & Bassani, Marco, 2021. "Updating and transferring Random Effect models: The case of operating speed percentile estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 286-304.
    2. Himes, Scott C. & Donnell, Eric T. & Porter, Richard J., 2013. "Posted speed limit: To include or not to include in operating speed models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 52(C), pages 23-33.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bertoli, Simone & Fernández-Huertas Moraga, Jesús, 2013. "Multilateral resistance to migration," Journal of Development Economics, Elsevier, vol. 102(C), pages 79-100.
    2. Coifman, Benjamin A. & Mallika, Ramachandran, 2007. "Distributed surveillance on freeways emphasizing incident detection and verification," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(8), pages 750-767, October.
    3. Brücker, Herbert & Bertoli, Simone & Fernández-Huertas Moraga, Jesús, 2013. "The European Crisis and Migration to Germany: Expectations and the Diversion of Migration Flows," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79693, Verein für Socialpolitik / German Economic Association.
    4. Marzano, Vittorio & Papola, Andrea, 2008. "On the covariance structure of the Cross-Nested Logit model," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 83-98, February.
    5. Peter Davis & Pasquale Schiraldi, 2014. "The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products," RAND Journal of Economics, RAND Corporation, vol. 45(1), pages 32-63, March.
    6. Simone Bertoli & Jesus Fernández-Huertas Moraga, 2012. "Visa Policies, Networks and the Cliff at the Border," Working Papers 2012-12, FEDEA.
    7. Ma, Jie & Meng, Qiang & Cheng, Lin & Liu, Zhiyuan, 2022. "General stochastic ridesharing user equilibrium problem with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 162-194.
    8. José-Benito Pérez-López & Margarita Novales & Francisco-Alberto Varela-García & Alfonso Orro, 2020. "Residential Location Econometric Choice Modeling with Irregular Zoning: Common Border Spatial Correlation Metric," Networks and Spatial Economics, Springer, vol. 20(3), pages 785-802, September.
    9. Zheng Zhu & Xiqun Chen & Chenfeng Xiong & Lei Zhang, 2018. "A mixed Bayesian network for two-dimensional decision modeling of departure time and mode choice," Transportation, Springer, vol. 45(5), pages 1499-1522, September.
    10. Koppelman, Frank S. & Sethi, Vaneet, 2005. "Incorporating variance and covariance heterogeneity in the Generalized Nested Logit model: an application to modeling long distance travel choice behavior," Transportation Research Part B: Methodological, Elsevier, vol. 39(9), pages 825-853, November.
    11. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    12. Haruna Sekabira & Shamim Nalunga, 2020. "Farm Production Diversity: Is It Important for Dietary Diversity? Panel Data Evidence from Uganda," Sustainability, MDPI, vol. 12(3), pages 1-21, January.
    13. Gao, Ge & Sun, Huijun & Wu, Jianjun & Liu, Xinmin & Chen, Weiya, 2018. "Park-and-ride service design under a price-based tradable credits scheme in a linear monocentric city," Transport Policy, Elsevier, vol. 68(C), pages 1-12.
    14. Matthew Kovach & Gerelt Tserenjigmid, 2022. "Behavioral Foundations of Nested Stochastic Choice and Nested Logit," Journal of Political Economy, University of Chicago Press, vol. 130(9), pages 2411-2461.
    15. Sasic, Ana & Habib, Khandker Nurul, 2013. "Modelling departure time choices by a Heteroskedastic Generalized Logit (Het-GenL) model: An investigation on home-based commuting trips in the Greater Toronto and Hamilton Area (GTHA)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 15-32.
    16. Rajeev Kohli & Kamel Jedidi, 2017. "Relation Between EBA and Nested Logit Models," Operations Research, INFORMS, vol. 65(3), pages 621-634, June.
    17. Marzano, Vittorio & Papola, Andrea & Simonelli, Fulvio & Vitillo, Roberta, 2013. "A practically tractable expression of the covariances of the Cross-Nested Logit model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 1-11.
    18. Perez-Lopez, Jose-Benito & Novales, Margarita & Orro, Alfonso, 2022. "Spatially correlated nested logit model for spatial location choice," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 1-12.
    19. Hongmin Li & Scott Webster, 2017. "Optimal Pricing of Correlated Product Options Under the Paired Combinatorial Logit Model," Operations Research, INFORMS, vol. 65(5), pages 1215-1230, October.
    20. repec:aer:wpaper:396 is not listed on IDEAS
    21. Mai, Tien, 2016. "A method of integrating correlation structures for a generalized recursive route choice model," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 146-161.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:40:y:2006:i:5:p:375-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.