IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v31y1997i5p403-417.html
   My bibliography  Save this article

Dynamic expansion and location of an airport: A multiple objective approach

Author

Listed:
  • Min, Hokey
  • Melachrinoudis, Emanuel
  • Wu, Xing

Abstract

In this paper we propose a dynamic, multi-objective, mixed integer programming model that aims to determine the optimal airport site under capacity and budgetary restrictions. In contrast with the existing models, the proposed model can also solve a practical size location-allocation problem without serious computational difficulty. As a practical example, the model has been applied to the airport expansion and construction problem facing the Massachusetts Port Authority and Aeronautics Commission.

Suggested Citation

  • Min, Hokey & Melachrinoudis, Emanuel & Wu, Xing, 1997. "Dynamic expansion and location of an airport: A multiple objective approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(5), pages 403-417, September.
  • Handle: RePEc:eee:transa:v:31:y:1997:i:5:p:403-417
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(96)00037-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saatcioglu, Omer, 1982. "Mathematical programming models for airport site selection," Transportation Research Part B: Methodological, Elsevier, vol. 16(6), pages 435-447, December.
    2. Current, John & Min, Hokey & Schilling, David, 1990. "Multiobjective analysis of facility location decisions," European Journal of Operational Research, Elsevier, vol. 49(3), pages 295-307, December.
    3. Schilling, David A. & Revelle, Charles & Cohon, Jared, 1983. "An approach to the display and analysis of multiobjective problems," Socio-Economic Planning Sciences, Elsevier, vol. 17(2), pages 57-63.
    4. J Paelinck, 1977. "Qualitative Multicriteria Analysis: An Application to Airport Location," Environment and Planning A, , vol. 9(8), pages 883-895, August.
    5. Melachrinoudis, Emanuel & Cullinane, Thomas P., 1986. "Locating an undesirable facility with a minimax criterion," European Journal of Operational Research, Elsevier, vol. 24(2), pages 239-246, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tanrıverdi, Gökhan & Ecer, Fatih & Durak, Mehmet Şahin, 2022. "Exploring factors affecting airport selection during the COVID-19 pandemic from air cargo carriers’ perspective through the triangular fuzzy Dombi-Bonferroni BWM methodology," Journal of Air Transport Management, Elsevier, vol. 105(C).
    2. Santos, Miguel Gueifão & Antunes, António Pais, 2015. "Long-term evolution of airport networks: Optimization model and its application to the United States," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 17-46.
    3. Md Shahab Uddin & Pennung Warnitchai, 2020. "Decision support for infrastructure planning: a comprehensive location–allocation model for fire station in complex urban system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1475-1496, July.
    4. Wen, Meilin & Iwamura, Kakuzo, 2008. "Fuzzy facility location-allocation problem under the Hurwicz criterion," European Journal of Operational Research, Elsevier, vol. 184(2), pages 627-635, January.
    5. Yang, Zhongzhen & Yu, Shunan & Notteboom, Theo, 2016. "Airport location in multiple airport regions (MARs): The role of land and airside accessibility," Journal of Transport Geography, Elsevier, vol. 52(C), pages 98-110.
    6. Li, Ran & Tong, Daoqin, 2017. "Incorporating activity space and trip chaining into facility siting for accessibility maximization," Socio-Economic Planning Sciences, Elsevier, vol. 60(C), pages 1-14.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhongzhen & Yu, Shunan & Notteboom, Theo, 2016. "Airport location in multiple airport regions (MARs): The role of land and airside accessibility," Journal of Transport Geography, Elsevier, vol. 52(C), pages 98-110.
    2. Santos, Miguel Gueifão & Antunes, António Pais, 2015. "Long-term evolution of airport networks: Optimization model and its application to the United States," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 17-46.
    3. Malgorzata Miklas-Kalczynska & Pawel Kalczynski, 2024. "Multiple obnoxious facility location: the case of protected areas," Computational Management Science, Springer, vol. 21(1), pages 1-21, June.
    4. Hamid Mousavi & Soroush Avakh Darestani & Parham Azimi, 2021. "An artificial neural network based mathematical model for a stochastic health care facility location problem," Health Care Management Science, Springer, vol. 24(3), pages 499-514, September.
    5. Pérez-Mesa, Juan Carlos & Galdeano-Gómez, Emilio & Salinas Andújar, Jose A., 2012. "Logistics network and externalities for short sea transport: An analysis of horticultural exports from southeast Spain," Transport Policy, Elsevier, vol. 24(C), pages 188-198.
    6. Melachrinoudis, Emanuel & Min, Hokey, 2000. "The dynamic relocation and phase-out of a hybrid, two-echelon plant/warehousing facility: A multiple objective approach," European Journal of Operational Research, Elsevier, vol. 123(1), pages 1-15, May.
    7. Harris, Irina & Naim, Mohamed & Palmer, Andrew & Potter, Andrew & Mumford, Christine, 2011. "Assessing the impact of cost optimization based on infrastructure modelling on CO2 emissions," International Journal of Production Economics, Elsevier, vol. 131(1), pages 313-321, May.
    8. Varsei, Mohsen & Polyakovskiy, Sergey, 2017. "Sustainable supply chain network design: A case of the wine industry in Australia," Omega, Elsevier, vol. 66(PB), pages 236-247.
    9. Olivares-Benitez, Elias & Ríos-Mercado, Roger Z. & González-Velarde, José Luis, 2013. "A metaheuristic algorithm to solve the selection of transportation channels in supply chain design," International Journal of Production Economics, Elsevier, vol. 145(1), pages 161-172.
    10. Zuo-Jun Max Shen & Mark S. Daskin, 2005. "Trade-offs Between Customer Service and Cost in Integrated Supply Chain Design," Manufacturing & Service Operations Management, INFORMS, vol. 7(3), pages 188-207, September.
    11. Karatas, Mumtaz, 2017. "A multi-objective facility location problem in the presence of variable gradual coverage performance and cooperative cover," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1040-1051.
    12. Thomas R. Leinbach & Robert G. Cromley, 1989. "Modeling Integrated Development Investments in Rural Areas: An Indonesian Illustration," International Regional Science Review, , vol. 12(2), pages 229-243, August.
    13. Zhenyu Zhang & Jie Lin & Huirong Zhang & Shuangsheng Wu & Dapei Jiang, 2020. "Hybrid TODIM Method for Law Enforcement Possibility Evaluation of Judgment Debtor," Mathematics, MDPI, vol. 8(10), pages 1-21, October.
    14. Xiaoli Tian & Zeshui Xu & Xinxin Wang & Jing Gu & Fawaz E. Alsaadi, 2019. "Decision Models to Find a Promising Start-Up Firm with Qualiflex under Probabilistic Linguistic Circumstance," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1379-1402, July.
    15. Juan-juan Peng & Jian-qiang Wang & Wu-E Yang, 2017. "A multi-valued neutrosophic qualitative flexible approach based on likelihood for multi-criteria decision-making problems," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(2), pages 425-435, January.
    16. Ozgur Turetken, 2008. "Is your back-up IT infrastructure in a safe location?," Information Systems Frontiers, Springer, vol. 10(3), pages 375-383, July.
    17. Santos Peñate, D.R. & Suárez-Vega, R. & Dorta González, P., 2001. "Un modelo de decisión multicriterio para la localización de centros de tratamiento de residuos," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 17, pages 163-182, Abril.
    18. Fernandez, J. & Fernandez, P. & Pelegrin, B., 2000. "A continuous location model for siting a non-noxious undesirable facility within a geographical region," European Journal of Operational Research, Elsevier, vol. 121(2), pages 259-274, March.
    19. Luis Samaniego & Peter Treuner, 2006. "Optimisation of Infrastructure Location," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 26(2), pages 119-145, October.
    20. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H. & Ashok, Veilumuthu, 2013. "A GIS (geographical information system)-based spatial data mining approach for optimal location and capacity planning of distributed biomass power generation facilities: A case study of Tumkur distric," Energy, Elsevier, vol. 52(C), pages 77-88.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:31:y:1997:i:5:p:403-417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.