IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v45y1997i2p167-195.html
   My bibliography  Save this article

Bicriteria and restricted 2-Facility Weber Problems

Author

Listed:
  • Stefan Nickel

Abstract

In this paper we look at two interesting extensions to the classical 2-Facility Weber Problem in ℝ d : At first problems are investigated where we do not allow the optimal locations to be in a specific region. Efficient algorithms for this Global Optimization problem are presented as well as new structural results. Secondly we consider 2-Facility Weber Problems with two decision makers where each decision maker can choose his own preferences for the location problem. We give an efficient algorithm for determining all pareto locations for this multicriteria problem as well as a polynomial description of the set of all pareto locations (in ℝ 2d ). All the results presented in this paper are based on a discretization of the original continuous problem using geometrical and combinatorial arguments. The time complexity of all the presented algorithms isO(dM logM), whereM is the number of existing facilities. Copyright Physica-Verlag 1997

Suggested Citation

  • Stefan Nickel, 1997. "Bicriteria and restricted 2-Facility Weber Problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 45(2), pages 167-195, June.
  • Handle: RePEc:spr:mathme:v:45:y:1997:i:2:p:167-195
    DOI: 10.1007/BF01193859
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF01193859
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF01193859?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Current, John & Min, Hokey & Schilling, David, 1990. "Multiobjective analysis of facility location decisions," European Journal of Operational Research, Elsevier, vol. 49(3), pages 295-307, December.
    2. Arthur M. Geoffrion, 1967. "Solving Bicriterion Mathematical Programs," Operations Research, INFORMS, vol. 15(1), pages 39-54, February.
    3. Hamacher, H. W. & Nickel, S., 1994. "Combinatorial algorithms for some 1-facility median problems in the plane," European Journal of Operational Research, Elsevier, vol. 79(2), pages 340-351, December.
    4. Hamacher, H. W. & Nickel, S., 1996. "Multicriteria planar location problems," European Journal of Operational Research, Elsevier, vol. 94(1), pages 66-86, October.
    5. Rajan Batta & Anjan Ghose & Udatta S. Palekar, 1989. "Locating Facilities on the Manhattan Metric with Arbitrarily Shaped Barriers and Convex Forbidden Regions," Transportation Science, INFORMS, vol. 23(1), pages 26-36, February.
    6. Richard C. Larson & Ghazala Sadiq, 1983. "Facility Locations with the Manhattan Metric in the Presence of Barriers to Travel," Operations Research, INFORMS, vol. 31(4), pages 652-669, August.
    7. White, D. J., 1982. "Dominance and optimal location," European Journal of Operational Research, Elsevier, vol. 9(3), pages 309-308, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kathrin Klamroth & Margaret M. Wiecek, 2002. "A Bi-Objective Median Location Problem With a Line Barrier," Operations Research, INFORMS, vol. 50(4), pages 670-679, August.
    2. H. W. Hamacher & S. Nickel, 1995. "Restricted planar location problems and applications," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(6), pages 967-992, September.
    3. Nickel, Stefan, 1998. "Restricted center problems under polyhedral gauges," European Journal of Operational Research, Elsevier, vol. 104(2), pages 343-357, January.
    4. Klamroth, K., 2001. "A reduction result for location problems with polyhedral barriers," European Journal of Operational Research, Elsevier, vol. 130(3), pages 486-497, May.
    5. Sarkar, Avijit & Batta, Rajan & Nagi, Rakesh, 2004. "Commentary on facility location in the presence of congested regions with the rectilinear distance metric," Socio-Economic Planning Sciences, Elsevier, vol. 38(4), pages 291-306, December.
    6. Kafer, Barbara & Nickel, Stefan, 2001. "Error bounds for the approximative solution of restricted planar location problems," European Journal of Operational Research, Elsevier, vol. 135(1), pages 67-85, November.
    7. Klamroth, K., 2004. "Algebraic properties of location problems with one circular barrier," European Journal of Operational Research, Elsevier, vol. 154(1), pages 20-35, April.
    8. Avella, P. & Benati, S. & Canovas Martinez, L. & Dalby, K. & Di Girolamo, D. & Dimitrijevic, B. & Ghiani, G. & Giannikos, I. & Guttmann, N. & Hultberg, T. H. & Fliege, J. & Marin, A. & Munoz Marquez, , 1998. "Some personal views on the current state and the future of locational analysis," European Journal of Operational Research, Elsevier, vol. 104(2), pages 269-287, January.
    9. Canbolat, Mustafa S. & Wesolowsky, George O., 2010. "The rectilinear distance Weber problem in the presence of a probabilistic line barrier," European Journal of Operational Research, Elsevier, vol. 202(1), pages 114-121, April.
    10. Andrea Maier & Horst W. Hamacher, 2019. "Complexity results on planar multifacility location problems with forbidden regions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 433-484, June.
    11. P.M. Dearing & H.W. Hamacher & K. Klamroth, 2002. "Dominating sets for rectilinear center location problems with polyhedral barriers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(7), pages 647-665, October.
    12. S. Nobakhtian & A. Raeisi Dehkordi, 2018. "A fast algorithm for the rectilinear distance location problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(1), pages 81-98, August.
    13. Selçuk Savaş & Rajan Batta & Rakesh Nagi, 2002. "Finite-Size Facility Placement in the Presence of Barriers to Rectilinear Travel," Operations Research, INFORMS, vol. 50(6), pages 1018-1031, December.
    14. Bischoff, M. & Klamroth, K., 2007. "An efficient solution method for Weber problems with barriers based on genetic algorithms," European Journal of Operational Research, Elsevier, vol. 177(1), pages 22-41, February.
    15. Kelachankuttu, Hari & Batta, Rajan & Nagi, Rakesh, 2007. "Contour line construction for a new rectangular facility in an existing layout with rectangular departments," European Journal of Operational Research, Elsevier, vol. 180(1), pages 149-162, July.
    16. P. Dearing & K. Klamroth & R. Segars, 2005. "Planar Location Problems with Block Distance and Barriers," Annals of Operations Research, Springer, vol. 136(1), pages 117-143, April.
    17. Sándor P. Fekete & Joseph S. B. Mitchell & Karin Beurer, 2005. "On the Continuous Fermat-Weber Problem," Operations Research, INFORMS, vol. 53(1), pages 61-76, February.
    18. Masashi Miyagawa, 2012. "Rectilinear distance to a facility in the presence of a square barrier," Annals of Operations Research, Springer, vol. 196(1), pages 443-458, July.
    19. Hamacher, H. W. & Nickel, S., 1996. "Multicriteria planar location problems," European Journal of Operational Research, Elsevier, vol. 94(1), pages 66-86, October.
    20. Amiri-Aref, Mehdi & Farahani, Reza Zanjirani & Hewitt, Mike & Klibi, Walid, 2019. "Equitable location of facilities in a region with probabilistic barriers to travel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 66-85.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:45:y:1997:i:2:p:167-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.