IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v190y2024ics0965856424003318.html
   My bibliography  Save this article

Optimizing freight delivery routes: The time-distance dilemma

Author

Listed:
  • Álvarez, Pablo
  • Serrano-Hernandez, Adrian
  • Lerga, Iosu
  • Faulin, Javier

Abstract

Traditional approaches to optimizing freight delivery routes are based on minimizing a distance-based cost function. New approaches also use time as an objective function to minimize. However, the trade-off between time and distance is sometimes unclear. This paper presents a new approach to route optimization in which both time and distance are considered conjointly. For this purpose, the vehicle operating cost and the value of time have been used to translate time and distance into monetary units. By studying three different networks in Spain with varying levels of detail (the region of Catalonia, the city of Barcelona, and the Pamplona city center), the results show that minimizing both time and distance yield better results than the traditional approach, especially at a local level, where congestion effects are more relevant. These findings are helpful for logistics companies to optimize their operations, as well as for public authorities who could employ these models to make decisions and create policies on logistics.

Suggested Citation

  • Álvarez, Pablo & Serrano-Hernandez, Adrian & Lerga, Iosu & Faulin, Javier, 2024. "Optimizing freight delivery routes: The time-distance dilemma," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:transa:v:190:y:2024:i:c:s0965856424003318
    DOI: 10.1016/j.tra.2024.104283
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856424003318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2024.104283?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Gendreau & Alain Hertz & Gilbert Laporte, 1994. "A Tabu Search Heuristic for the Vehicle Routing Problem," Management Science, INFORMS, vol. 40(10), pages 1276-1290, October.
    2. Sluijk, Natasja & Florio, Alexandre M. & Kinable, Joris & Dellaert, Nico & Van Woensel, Tom, 2023. "Two-echelon vehicle routing problems: A literature review," European Journal of Operational Research, Elsevier, vol. 304(3), pages 865-886.
    3. Gschwind, Timo & Bianchessi, Nicola & Irnich, Stefan, 2019. "Stabilized branch-price-and-cut for the commodity-constrained split delivery vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 91-104.
    4. Figliozzi, Miguel & Saenz, Jesus & Faulin, Javier, 2020. "Minimization of urban freight distribution lifecycle CO2e emissions: Results from an optimization model and a real-world case study," Transport Policy, Elsevier, vol. 86(C), pages 60-68.
    5. Rashidi, Taha Hossein & Waller, Travis & Axhausen, Kay, 2020. "Reduced value of time for autonomous vehicle users: Myth or reality?," Transport Policy, Elsevier, vol. 95(C), pages 30-36.
    6. Hossan, Md Sakoat & Asgari, Hamidreza & Jin, Xia, 2016. "Investigating preference heterogeneity in Value of Time (VOT) and Value of Reliability (VOR) estimation for managed lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 638-649.
    7. Zhen, Lu & Ma, Chengle & Wang, Kai & Xiao, Liyang & Zhang, Wei, 2020. "Multi-depot multi-trip vehicle routing problem with time windows and release dates," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    8. Serdar Çolak & Antonio Lima & Marta C. González, 2016. "Understanding congested travel in urban areas," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    9. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    10. S. Srivatsa Srinivas & M. S. Gajanand, 2017. "Vehicle routing problem and driver behaviour: a review and framework for analysis," Transport Reviews, Taylor & Francis Journals, vol. 37(5), pages 590-611, September.
    11. Klaus-Dieter Rest & Patrick Hirsch, 2016. "Daily scheduling of home health care services using time-dependent public transport," Flexible Services and Manufacturing Journal, Springer, vol. 28(3), pages 495-525, September.
    12. Vosough, Shaghayegh & de Palma, André & Lindsey, Robin, 2022. "Pricing vehicle emissions and congestion externalities using a dynamic traffic network simulator," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 1-24.
    13. Juliana Castaneda & Elnaz Ghorbani & Majsa Ammouriova & Javier Panadero & Angel A. Juan, 2022. "Optimizing Transport Logistics under Uncertainty with Simheuristics: Concepts, Review and Trends," Logistics, MDPI, vol. 6(3), pages 1-15, June.
    14. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    15. Tao, Xuezong & Zhu, Lichao, 2020. "Meta-analysis of value of time in freight transportation: A comprehensive review based on discrete choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 213-233.
    16. Wang, Yong & Peng, Shouguo & Zhou, Xuesong & Mahmoudi, Monirehalsadat & Zhen, Lu, 2020. "Green logistics location-routing problem with eco-packages," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    17. Mir Ehsan Hesam Sadati & Vahid Akbari & Bülent Çatay, 2022. "Electric vehicle routing problem with flexible deliveries," International Journal of Production Research, Taylor & Francis Journals, vol. 60(13), pages 4268-4294, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Müller, Juliane, 2010. "Approximative solutions to the bicriterion Vehicle Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 202(1), pages 223-231, April.
    2. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    3. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    4. Gilbert Laporte, 2007. "What you should know about the vehicle routing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(8), pages 811-819, December.
    5. Lai, David S.W. & Caliskan Demirag, Ozgun & Leung, Janny M.Y., 2016. "A tabu search heuristic for the heterogeneous vehicle routing problem on a multigraph," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 32-52.
    6. Cortes, Juan David & Suzuki, Yoshinori, 2020. "Vehicle Routing with Shipment Consolidation," International Journal of Production Economics, Elsevier, vol. 227(C).
    7. Mohamed Cissé & Semih Yalçindag & Yannick Kergosien & Evren Sahin & Christophe Lenté & Andrea Matta, 2017. "OR problems related to Home Health Care: A review of relevant routing and scheduling problems," Post-Print hal-01736714, HAL.
    8. Manuel Iori & Silvano Martello, 2010. "Routing problems with loading constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 4-27, July.
    9. Berbotto, Leonardo & García, Sergio & Nogales, Francisco J., 2011. "A vehicle routing model with split delivery and stop nodes," DES - Working Papers. Statistics and Econometrics. WS ws110906, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Zhang, Jianghua & Zhao, Yingxue & Xue, Weili & Li, Jin, 2015. "Vehicle routing problem with fuel consumption and carbon emission," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 234-242.
    11. Samuel Reong & Hui-Ming Wee & Yu-Lin Hsiao, 2022. "20 Years of Particle Swarm Optimization Strategies for the Vehicle Routing Problem: A Bibliometric Analysis," Mathematics, MDPI, vol. 10(19), pages 1-19, October.
    12. Li, Jian & Cang, Lu & Wu, Yisheng & Zhang, Zhaotong, 2025. "Two-echelon collaborative many-to-many pickup and delivery problem for agricultural wholesale markets with workload balance," Omega, Elsevier, vol. 130(C).
    13. Liu, Ran & Jiang, Zhibin, 2012. "The close–open mixed vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 220(2), pages 349-360.
    14. Jumbo, Olga & Moghaddass, Ramin, 2022. "Resource optimization and image processing for vegetation management programs in power distribution networks," Applied Energy, Elsevier, vol. 319(C).
    15. Qi, Mingyao & Lin, Wei-Hua & Li, Nan & Miao, Lixin, 2012. "A spatiotemporal partitioning approach for large-scale vehicle routing problems with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 248-257.
    16. Srinivas, Sharan & Ramachandiran, Surya & Rajendran, Suchithra, 2022. "Autonomous robot-driven deliveries: A review of recent developments and future directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    17. César Rego, 1998. "A Subpath Ejection Method for the Vehicle Routing Problem," Management Science, INFORMS, vol. 44(10), pages 1447-1459, October.
    18. Martinhon, Carlos & Lucena, Abilio & Maculan, Nelson, 2004. "Stronger K-tree relaxations for the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 158(1), pages 56-71, October.
    19. Yuxin Liu & Zihang Qin & Jin Liu, 2023. "An Improved Genetic Algorithm for the Granularity-Based Split Vehicle Routing Problem with Simultaneous Delivery and Pickup," Mathematics, MDPI, vol. 11(15), pages 1-15, July.
    20. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:190:y:2024:i:c:s0965856424003318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.