IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v107y2023ics0966692323000169.html
   My bibliography  Save this article

Identifying the collaborative scheduling areas between ride-hailing and traditional taxi services based on vehicle trajectory data

Author

Listed:
  • Zhao, Zhiyuan
  • Yao, Wei
  • Wu, Sheng
  • Yang, Xiping
  • Wu, Qunyong
  • Fang, Zhixiang

Abstract

Traditional taxi services (TTSs) play an important role in satisfying daily travel demands. The rapid growth of ride-hailing services (RHSs) has increased the convenience of customized travel. However, the volume of empty ride-hailing vehicles has increased. Identifying the collaborative scheduling areas (CoSAs) between RHSs and TTSs can further improve the efficiency of urban travel services. Therefore, we propose a method to identify CoSAs based on the travel demand and vehicle supply of TTSs and RHSs derived from trajectory data. We first optimize and make the temporal resolution of the trajectories of different types of vehicles uniform based on the shortest path algorithm. Then, the indicators describing travel demand and vehicle supply are defined and calculated. Finally, the areas with a high vehicle supply of one type and a low vehicle supply and high travel demand of the other type are identified as CoSAs. A dataset for Xiamen Island indicates that the CoSAs of TTSs to RHSs can provide potential routes to pick up passengers that are 41% and 11% shorter than the actual routes at 9:00 and 18:00, respectively. The constructed method can also improve the CoSA identification results.

Suggested Citation

  • Zhao, Zhiyuan & Yao, Wei & Wu, Sheng & Yang, Xiping & Wu, Qunyong & Fang, Zhixiang, 2023. "Identifying the collaborative scheduling areas between ride-hailing and traditional taxi services based on vehicle trajectory data," Journal of Transport Geography, Elsevier, vol. 107(C).
  • Handle: RePEc:eee:jotrge:v:107:y:2023:i:c:s0966692323000169
    DOI: 10.1016/j.jtrangeo.2023.103544
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692323000169
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2023.103544?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erdem Ozdemir & Ahmet E. Topcu & Mehmet Kemal Ozdemir, 2018. "A hybrid HMM model for travel path inference with sparse GPS samples," Transportation, Springer, vol. 45(1), pages 233-246, January.
    2. Roberto Ponce Lopez & Joseph Ferreira, 2021. "Identifying spatio-temporal hotspots of human activity that are popular non-work destinations," Environment and Planning B, , vol. 48(3), pages 433-448, March.
    3. Tang, Jinjun & Zhang, Shen & Zhang, Wenhui & Liu, Fang & Zhang, Weibin & Wang, Yinhai, 2016. "Statistical properties of urban mobility from location-based travel networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 694-707.
    4. Zhong, Yuanguang & Yang, Tong & Cao, Bin & Cheng, T.C.E., 2022. "On-demand ride-hailing platforms in competition with the taxi industry: Pricing strategies and government supervision," International Journal of Production Economics, Elsevier, vol. 243(C).
    5. Chen, Fangxi & Yin, Zhiwei & Ye, Yingwei & Sun, Daniel(Jian), 2020. "Taxi hailing choice behavior and economic benefit analysis of emission reduction based on multi-mode travel big data," Transport Policy, Elsevier, vol. 97(C), pages 73-84.
    6. Joshua D. Angrist & Sydnee Caldwell & Jonathan V. Hall, 2021. "Uber versus Taxi: A Driver's Eye View," American Economic Journal: Applied Economics, American Economic Association, vol. 13(3), pages 272-308, July.
    7. Zhang, Bin & Chen, Shuyan & Ma, Yongfeng & Li, Tiezhu & Tang, Kun, 2020. "Analysis on spatiotemporal urban mobility based on online car-hailing data," Journal of Transport Geography, Elsevier, vol. 82(C).
    8. Dong, Xianlei & Zhang, Min & Zhang, Shuang & Shen, Xinyi & Hu, Beibei, 2019. "The analysis of urban taxi operation efficiency based on GPS trajectory big data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 528(C).
    9. Fangru Wang & Catherine L. Ross, 2019. "New potential for multimodal connection: exploring the relationship between taxi and transit in New York City (NYC)," Transportation, Springer, vol. 46(3), pages 1051-1072, June.
    10. Xiao, Chaowei & Silva, Elisabete A. & Zhang, Chuchu, 2020. "Nine-nine-six work system and people’s movement patterns: Using big data sets to analyse overtime working in Shanghai," Land Use Policy, Elsevier, vol. 90(C).
    11. Judd Cramer & Alan B. Krueger, 2016. "Disruptive Change in the Taxi Business: The Case of Uber," American Economic Review, American Economic Association, vol. 106(5), pages 177-182, May.
    12. Li, Xijing & Ma, Xinlin & Wilson, Bev, 2021. "Beyond absolute space: An exploration of relative and relational space in Shanghai using taxi trajectory data," Journal of Transport Geography, Elsevier, vol. 93(C).
    13. Mingyang Du & Lin Cheng & Xuefeng Li & Jingzong Yang, 2019. "Investigating the Influential Factors of Shared Travel Behavior: Comparison between App-Based Third Taxi Service and Free-Floating Bike Sharing in Nanjing, China," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    14. Zhang, Xiaohu & Xu, Yang & Tu, Wei & Ratti, Carlo, 2018. "Do different datasets tell the same story about urban mobility — A comparative study of public transit and taxi usage," Journal of Transport Geography, Elsevier, vol. 70(C), pages 78-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhiqi & Zhang, Yufeng & Jia, Bin & Gao, Ziyou, 2024. "Comparative Analysis of Usage Patterns and Underlying Determinants for Ride-hailing and Traditional Taxi Services: A Chicago Case Study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Sicheng & Du, Rui & Lee, Annie S., 2024. "Ridesourcing regulation and traffic speeds: A New York case," Journal of Transport Geography, Elsevier, vol. 116(C).
    2. Kirtonia, Sajeeb & Sun, Yanshuo, 2022. "Evaluating rail transit's comparative advantages in travel cost and time over taxi with open data in two U.S. cities," Transport Policy, Elsevier, vol. 115(C), pages 75-87.
    3. HUO, Zhengqi & YANG, Xiaobao & LIU, Xiaobing & YAN, Xuedong, 2024. "Spatio-temporal analysis on online designated driving based on empirical data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    4. Zhai, Wei & Bai, Xueyin & Peng, Zhong-ren & Gu, Chaolin, 2019. "A bottom-up transportation network efficiency measuring approach: A case study of taxi efficiency in New York City," Journal of Transport Geography, Elsevier, vol. 80(C).
    5. Liao, Yuan, 2021. "Ride-sourcing compared to its public-transit alternative using big trip data," Journal of Transport Geography, Elsevier, vol. 95(C).
    6. Yujie Guo & Ying Chen & Yu Zhang, 2024. "Enhancing Demand Prediction: A Multi-Task Learning Approach for Taxis and TNCs," Sustainability, MDPI, vol. 16(5), pages 1-14, March.
    7. Rezwana Rafiq & Michael G. McNally, 2023. "An exploratory analysis of alternative travel behaviors of ride-hailing users," Transportation, Springer, vol. 50(2), pages 571-605, April.
    8. Daniel Oviedo & Isabel Granada & Daniel Perez-Jaramillo, 2020. "Ridesourcing and Travel Demand: Potential Effects of Transportation Network Companies in Bogotá," Sustainability, MDPI, vol. 12(5), pages 1-16, February.
    9. Chen, Chao & Feng, Tao & Ding, Chuan & Yu, Bin & Yao, Baozhen, 2021. "Examining the spatial-temporal relationship between urban built environment and taxi ridership: Results of a semi-parametric GWPR model," Journal of Transport Geography, Elsevier, vol. 96(C).
    10. Wang, Zhiqi & Zhang, Yufeng & Jia, Bin & Gao, Ziyou, 2024. "Comparative Analysis of Usage Patterns and Underlying Determinants for Ride-hailing and Traditional Taxi Services: A Chicago Case Study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    11. Xinyi Xie & Mingyang Du & Xuefeng Li & Yunjian Jiang, 2023. "Exploring Influential Factors of Free-Floating Bike-Sharing Usage Frequency before and after COVID-19," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    12. He, Mingwei & He, Chengfeng & Shi, Zhuangbin & He, Min, 2022. "Spatiotemporal heterogeneous effects of socio-demographic and built environment on private car usage: An empirical study of Kunming, China," Journal of Transport Geography, Elsevier, vol. 101(C).
    13. Berger, Thor & Chen, Chinchih & Frey, Carl Benedikt, 2018. "Drivers of disruption? Estimating the Uber effect," European Economic Review, Elsevier, vol. 110(C), pages 197-210.
    14. Kräussl, Roman & Kräussl, Zsofia & Pollet, Joshua & Rinne, Kalle, 2024. "The performance of marketplace lenders," Journal of Banking & Finance, Elsevier, vol. 162(C).
    15. Yue Guo & Fu Xin & Xiaotong Li, 2020. "The market impacts of sharing economy entrants: evidence from USA and China," Electronic Commerce Research, Springer, vol. 20(3), pages 629-649, September.
    16. Wang, Tao & Guo, Jia & Zhang, Wei & Wang, Kai & Qu, Xiaobo, 2024. "On the planning of zone-based electric on-demand minibus," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    17. Agam Gupta & Biswatosh Saha & Parthasarathi Banerjee, 2018. "Pricing decisions of car aggregation platforms in sharing economy: a developing economy perspective," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 17(5), pages 341-355, October.
    18. Yingjie Zhang & Beibei Li & Ramayya Krishnan, 2020. "Learning Individual Behavior Using Sensor Data: The Case of Global Positioning System Traces and Taxi Drivers," Information Systems Research, INFORMS, vol. 31(4), pages 1301-1321, December.
    19. Hu, Xinru & Zhou, Shuiyin & Luo, Xiaomeng & Li, Jianbin & Zhang, Chi, 2024. "Optimal pricing strategy of an on-demand platform with cross-regional passengers," Omega, Elsevier, vol. 122(C).
    20. Rathore, Bhawana & Sengupta, Pooja & Biswas, Baidyanath & Kumar, Ajay, 2024. "Predicting the price of taxicabs using Artificial Intelligence: A hybrid approach based on clustering and ordinal regression models," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:107:y:2023:i:c:s0966692323000169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.