IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v179y2024ics0965856423003312.html
   My bibliography  Save this article

Constraint-Based snowplow optimization model for winter maintenance operations

Author

Listed:
  • Nguyen, Phuong H.D.
  • Tran, Daniel

Abstract

In the annual winter route maintenance, transportation agencies often deploy multiple fleets of trucks for snow control and removal activities over a vast maintenance area which creates an operational problem in determining the optimal maintenance routes and fleet size. The objective of this paper is to develop a snowplow routing optimization model to enhance the efficiency of snow removal route planning. The routing optimization model was developed using vehicle routing problems, constraint-based programming, and geographic information system. The developed model was applied to optimize the snow removal route planning practice of a District in Kansas, United States, as a case study. The result of this study shows that the optimization model can help minimize the fleet size and increase the level of service for treating snow routes within the selected District. The results of this study are expected to assist transportation agencies in optimizing their snow route removal in winter maintenance operations.

Suggested Citation

  • Nguyen, Phuong H.D. & Tran, Daniel, 2024. "Constraint-Based snowplow optimization model for winter maintenance operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:transa:v:179:y:2024:i:c:s0965856423003312
    DOI: 10.1016/j.tra.2023.103911
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856423003312
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103911?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brunner, Carlos & Giesen, Ricardo & Klapp, Mathias A. & Flórez-Calderón, Luz, 2021. "Vehicle routing problem with steep roads," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 1-17.
    2. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    3. Joris Kinable & Willem-Jan van Hoeve & Stephen F. Smith, 2020. "Snow plow route optimization: A constraint programming approach," IISE Transactions, Taylor & Francis Journals, vol. 53(6), pages 685-703, November.
    4. Sullivan, James L. & Dowds, Jonathan & Novak, David C. & Scott, Darren M. & Ragsdale, Cliff, 2019. "Development and application of an iterative heuristic for roadway snow and ice control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 18-31.
    5. Nathalie Perrier & André Langevin & Ciro-Alberto Amaya, 2008. "Vehicle Routing for Urban Snow Plowing Operations," Transportation Science, INFORMS, vol. 42(1), pages 44-56, February.
    6. Rincon-Garcia, Nicolas & Waterson, Ben & Cherrett, Tom J. & Salazar-Arrieta, Fernando, 2020. "A metaheuristic for the time-dependent vehicle routing problem considering driving hours regulations – An application in city logistics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 429-446.
    7. Campbell, James F. & Langevin, André, 1995. "Operations management for urban snow removal and disposal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(5), pages 359-370, September.
    8. Haghani, Ali & Banihashemi, Mohamadreza, 2002. "Heuristic approaches for solving large-scale bus transit vehicle scheduling problem with route time constraints," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(4), pages 309-333, May.
    9. Mayerle, Sérgio Fernando & De Genaro Chiroli, Daiane Maria & Neiva de Figueiredo, João & Rodrigues, Hidelbrando Ferreira, 2020. "The long-haul full-load vehicle routing and truck driver scheduling problem with intermediate stops: An economic impact evaluation of Brazilian policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 36-51.
    10. Fu, Liping & Trudel, Mathieu & Kim, Valeri, 2009. "Optimizing winter road maintenance operations under real-time information," European Journal of Operational Research, Elsevier, vol. 196(1), pages 332-341, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sullivan, James L. & Dowds, Jonathan & Novak, David C. & Scott, Darren M. & Ragsdale, Cliff, 2019. "Development and application of an iterative heuristic for roadway snow and ice control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 18-31.
    2. Abdullah Rasul & Jaho Seo & Shuoyan Xu & Tae J. Kwon & Justin MacLean & Cody Brown, 2022. "Optimization of Snowplow Routes for Real-World Conditions," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    3. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    4. Diego Cattaruzza & Nabil Absi & Dominique Feillet & Jesús González-Feliu, 2017. "Vehicle routing problems for city logistics," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 51-79, March.
    5. Reyes, Damián & Erera, Alan L. & Savelsbergh, Martin W.P., 2018. "Complexity of routing problems with release dates and deadlines," European Journal of Operational Research, Elsevier, vol. 266(1), pages 29-34.
    6. Dhirendra Prajapati & M. Manoj Kumar & Saurabh Pratap & H. Chelladurai & Mohd Zuhair, 2021. "Sustainable Logistics Network Design for Delivery Operations with Time Horizons in B2B E-Commerce Platform," Logistics, MDPI, vol. 5(3), pages 1-13, September.
    7. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    8. Xiaoguang Bao & Xinhao Ni, 2024. "Approximation algorithms for two clustered arc routing problems," Journal of Combinatorial Optimization, Springer, vol. 47(5), pages 1-12, July.
    9. Dessouky, Maged M & Hu, Shichun, 2021. "Dynamic Routing for Ride-Sharing," Institute of Transportation Studies, Working Paper Series qt6qq8r7hz, Institute of Transportation Studies, UC Davis.
    10. LIAN, Ying & LUCAS, Flavien & SÖRENSEN, Kenneth, 2022. "On-demand bus routing problem with dynamic stochastic requests and prepositioning," Working Papers 2022004, University of Antwerp, Faculty of Business and Economics.
    11. Mathias A. Klapp & Alan L. Erera & Alejandro Toriello, 2018. "The One-Dimensional Dynamic Dispatch Waves Problem," Transportation Science, INFORMS, vol. 52(2), pages 402-415, March.
    12. Kulkarni, Sarang & Krishnamoorthy, Mohan & Ranade, Abhiram & Ernst, Andreas T. & Patil, Rahul, 2018. "A new formulation and a column generation-based heuristic for the multiple depot vehicle scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 457-487.
    13. Marlin W. Ulmer & Alan Erera & Martin Savelsbergh, 2022. "Dynamic service area sizing in urban delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 763-793, September.
    14. Raka Jovanovic & Islam Safak Bayram & Sertac Bayhan & Stefan Voß, 2021. "A GRASP Approach for Solving Large-Scale Electric Bus Scheduling Problems," Energies, MDPI, vol. 14(20), pages 1-23, October.
    15. Zhang, Huili & Tong, Weitian & Xu, Yinfeng & Lin, Guohui, 2015. "The Steiner Traveling Salesman Problem with online edge blockages," European Journal of Operational Research, Elsevier, vol. 243(1), pages 30-40.
    16. Zolfagharinia, Hossein & Haughton, Michael, 2018. "The importance of considering non-linear layover and delay costs for local truckers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 331-355.
    17. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    18. Rubio, Francisco & Llopis-Albert, Carlos & Valero, Francisco, 2021. "Multi-objective optimization of costs and energy efficiency associated with autonomous industrial processes for sustainable growth," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    19. Timothy M. Sweda & Irina S. Dolinskaya & Diego Klabjan, 2017. "Adaptive Routing and Recharging Policies for Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1326-1348, November.
    20. Cordeau, Jean-François & Dell’Amico, Mauro & Falavigna, Simone & Iori, Manuel, 2015. "A rolling horizon algorithm for auto-carrier transportation," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 68-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:179:y:2024:i:c:s0965856423003312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.