IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v54y2024i6p471-486.html
   My bibliography  Save this article

Improving Snowplowing Operations in Utah Through Optimization and Visualization

Author

Listed:
  • Yinhu Wang

    (Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, Utah 84112)

  • Ye Chen

    (Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia 23284)

  • Ilya O. Ryzhov

    (Robert H. Smith School of Business, University of Maryland, College Park, Maryland 20742)

  • Xiaoyue Cathy Liu

    (Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, Utah 84112)

  • Nikola Marković

    (Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, Utah 84112)

Abstract

This paper describes efforts to improve snowplowing routes in 12 regions in northern Utah. Both exact and approximate methods are applied to determine snowplowing routes that decrease total travel time, turnaround time, and deadhead miles by an average of 5.04%, 15.01%, and 14.84%, respectively, across the 12 regions, which can significantly improve the efficiency of snow removal operations as well as the social welfare. Our models also evaluate the tradeoffs between different operational policies such as echelon versus nonechelon routing and centralized versus decentralized optimization and analyze various scenarios to understand the benefits of providing additional resources to different regions. These analyses enable local management teams to determine the best settings for their regions. In addition to optimization modeling, a major component of this work is the use of data visualization to demonstrate the effectiveness of the new routes (with comparisons to current practice) to the Utah Department of Transportation.

Suggested Citation

  • Yinhu Wang & Ye Chen & Ilya O. Ryzhov & Xiaoyue Cathy Liu & Nikola Marković, 2024. "Improving Snowplowing Operations in Utah Through Optimization and Visualization," Interfaces, INFORMS, vol. 54(6), pages 471-486, November.
  • Handle: RePEc:inm:orinte:v:54:y:2024:i:6:p:471-486
    DOI: 10.1287/inte.2023.0038
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.2023.0038
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2023.0038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joris Kinable & Willem-Jan van Hoeve & Stephen F. Smith, 2020. "Snow plow route optimization: A constraint programming approach," IISE Transactions, Taylor & Francis Journals, vol. 53(6), pages 685-703, November.
    2. Amanda Chu & Pinar Keskinocak & Monica C. Villarreal, 2020. "Introduction: Empowering Denver Public Schools to Optimize School Bus Operations," Interfaces, INFORMS, vol. 50(5), pages 298-312, September.
    3. Ehsan Khodabandeh & Lawrence V. Snyder & John Dennis & Joshua Hammond & Cody Wanless, 2022. "C.H. Robinson Uses Heuristics to Solve Rich Vehicle Routing Problems," Interfaces, INFORMS, vol. 52(2), pages 173-188, March.
    4. Nathalie Perrier & André Langevin & Ciro-Alberto Amaya, 2008. "Vehicle Routing for Urban Snow Plowing Operations," Transportation Science, INFORMS, vol. 42(1), pages 44-56, February.
    5. Haoyuan Hu & Ying Zhang & Jiangwen Wei & Yang Zhan & Xinhui Zhang & Shaojian Huang & Guangrui Ma & Yuming Deng & Siwei Jiang, 2022. "Alibaba Vehicle Routing Algorithms Enable Rapid Pick and Delivery," Interfaces, INFORMS, vol. 52(1), pages 27-41, January.
    6. Fu, Liping & Trudel, Mathieu & Kim, Valeri, 2009. "Optimizing winter road maintenance operations under real-time information," European Journal of Operational Research, Elsevier, vol. 196(1), pages 332-341, July.
    7. Claus Doll & Stefan Klug & Riccardo Enei, 2014. "Large and small numbers: options for quantifying the costs of extremes on transport now and in 40 years," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(1), pages 211-239, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Phuong H.D. & Tran, Daniel, 2024. "Constraint-Based snowplow optimization model for winter maintenance operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    2. Sullivan, James L. & Dowds, Jonathan & Novak, David C. & Scott, Darren M. & Ragsdale, Cliff, 2019. "Development and application of an iterative heuristic for roadway snow and ice control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 18-31.
    3. Yi Wang & Yafei Yang & Zhaoxiang Qin & Yefei Yang & Jun Li, 2023. "A Literature Review on the Application of Digital Technology in Achieving Green Supply Chain Management," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    4. Xiaoguang Bao & Xinhao Ni, 2024. "Approximation algorithms for two clustered arc routing problems," Journal of Combinatorial Optimization, Springer, vol. 47(5), pages 1-12, July.
    5. Sayarshad, Hamid R. & Du, Xinpi & Gao, H. Oliver, 2020. "Dynamic post-disaster debris clearance problem with re-positioning of clearance equipment items under partially observable information," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 352-372.
    6. Ohad Eisenhandler & Michal Tzur, 2019. "The Humanitarian Pickup and Distribution Problem," Operations Research, INFORMS, vol. 67(1), pages 10-32, January.
    7. Aakil M. Caunhye & Nazli Yonca Aydin & H. Sebnem Duzgun, 2020. "Robust post-disaster route restoration," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 1055-1087, December.
    8. Farzaneh, Mohammad Amin & Rezapour, Shabnam & Baghaian, Atefe & Amini, M. Hadi, 2023. "An integrative framework for coordination of damage assessment, road restoration, and relief distribution in disasters," Omega, Elsevier, vol. 115(C).
    9. Marco Colombi & Ángel Corberán & Renata Mansini & Isaac Plana & José M. Sanchis, 2017. "The Hierarchical Mixed Rural Postman Problem," Transportation Science, INFORMS, vol. 51(2), pages 755-770, May.
    10. Sophie N. Parragh & Karl F. Doerner, 2018. "Solving routing problems with pairwise synchronization constraints," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(2), pages 443-464, June.
    11. Fikar, Christian & Hirsch, Patrick & Posset, Martin & Gronalt, Manfred, 2016. "Impact of transalpine rail network disruptions: A study of the Brenner Pass," Journal of Transport Geography, Elsevier, vol. 54(C), pages 122-131.
    12. Philip Bubeck & Lisa Dillenardt & Lorenzo Alfieri & Luc Feyen & Annegret H. Thieken & Patric Kellermann, 2019. "Global warming to increase flood risk on European railways," Climatic Change, Springer, vol. 155(1), pages 19-36, July.
    13. Niklas Tuma & Manuel Ostermeier & Alexander Hübner, 2024. "Optimal Transportation Planning for a Do-It-Yourself Retailer with a Zone-Based Tariff," Interfaces, INFORMS, vol. 54(4), pages 312-328, July.
    14. Shah, Nirav & Kumar, Subodha & Bastani, Farokh & Yen, I-Ling, 2012. "Optimization models for assessing the peak capacity utilization of intelligent transportation systems," European Journal of Operational Research, Elsevier, vol. 216(1), pages 239-251.
    15. Abdullah Rasul & Jaho Seo & Shuoyan Xu & Tae J. Kwon & Justin MacLean & Cody Brown, 2022. "Optimization of Snowplow Routes for Real-World Conditions," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    16. Tianyu Wang & Igor Averbakh, 2022. "Network construction/restoration problems: cycles and complexity," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 51-73, August.
    17. Jiachen Zhang & Youcef Magnouche & Pierre Bauguion & Sebastien Martin & J. Christopher Beck, 2024. "Computing Bipath Multicommodity Flows with Constraint Programming–Based Branch-and-Price-and-Cut," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1634-1653, December.
    18. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    19. Diego Cattaruzza & Nabil Absi & Dominique Feillet & Jesús González-Feliu, 2017. "Vehicle routing problems for city logistics," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 51-79, March.
    20. Rafael Martinelli & Claudio Contardo, 2015. "Exact and Heuristic Algorithms for Capacitated Vehicle Routing Problems with Quadratic Costs Structure," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 658-676, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:54:y:2024:i:6:p:471-486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.