IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v93y2016icp115-129.html
   My bibliography  Save this article

Optimizing the service area and trip selection of an electric automated taxi system used for the last mile of train trips

Author

Listed:
  • Liang, Xiao
  • Correia, Gonçalo Homem de Almeida
  • van Arem, Bart

Abstract

We propose two integer programming models for optimizing an automated taxi (AT) system for last mile of train trips. Model S1: trip reservations are accepted or rejected by the operator according to the profit maximization; model S2: any reservation on a selected zone by the model must be satisfied. Models were applied to a case-study. Results indicate that fleet size influences the profitability of the taxi system: a fleet of 40 ATs is optimal in S1 and 60 ATs in S2. Having electric ATs constrains the system for small fleets because ATs will not have time for charging.

Suggested Citation

  • Liang, Xiao & Correia, Gonçalo Homem de Almeida & van Arem, Bart, 2016. "Optimizing the service area and trip selection of an electric automated taxi system used for the last mile of train trips," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 115-129.
  • Handle: RePEc:eee:transe:v:93:y:2016:i:c:p:115-129
    DOI: 10.1016/j.tre.2016.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554516300552
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2016.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baldwin Hess, Daniel, 2009. "Access to Public Transit and Its Influence on Ridership for Older Adults in Two U.S. Cities," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 2(1), pages 3-27.
    2. Shaheen, Susan A. & Sperling, Daniel & Wagner, Conrad, 1999. "A Short History of Carsharing in the 90's," Institute of Transportation Studies, Working Paper Series qt6p3305b0, Institute of Transportation Studies, UC Davis.
    3. Correia, Gonçalo Homem de Almeida & Antunes, António Pais, 2012. "Optimization approach to depot location and trip selection in one-way carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 233-247.
    4. Kek, Alvina G.H. & Cheu, Ruey Long & Meng, Qiang & Fung, Chau Ha, 2009. "A decision support system for vehicle relocation operations in carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 149-158, January.
    5. Itf, 2015. "Urban Mobility System Upgrade: How shared self-driving cars could change city traffic," International Transport Forum Policy Papers 6, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge, Diana & Molnar, Goran & de Almeida Correia, Gonçalo Homem, 2015. "Trip pricing of one-way station-based carsharing networks with zone and time of day price variations," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 461-482.
    2. Wagner, Sebastian & Brandt, Tobias & Neumann, Dirk, 2016. "In free float: Developing Business Analytics support for carsharing providers," Omega, Elsevier, vol. 59(PA), pages 4-14.
    3. Nair, Rahul & Miller-Hooks, Elise, 2014. "Equilibrium network design of shared-vehicle systems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 47-61.
    4. Wu, Peng, 2019. "Which battery-charging technology and insurance contract is preferred in the electric vehicle sharing business?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 537-548.
    5. Illgen, Stefan & Höck, Michael, 2019. "Literature review of the vehicle relocation problem in one-way car sharing networks," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 193-204.
    6. Nourinejad, Mehdi & Zhu, Sirui & Bahrami, Sina & Roorda, Matthew J., 2015. "Vehicle relocation and staff rebalancing in one-way carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 98-113.
    7. Joy Chang & Miao Yu & Siqian Shen & Ming Xu, 2017. "Location Design and Relocation of a Mixed Car-Sharing Fleet with a CO 2 Emission Constraint," Service Science, INFORMS, vol. 9(3), pages 205-218, September.
    8. Martin, Layla & Minner, Stefan, 2021. "Feature-based selection of carsharing relocation modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    9. Sisi Jian & David Rey & Vinayak Dixit, 2019. "An Integrated Supply-Demand Approach to Solving Optimal Relocations in Station-Based Carsharing Systems," Networks and Spatial Economics, Springer, vol. 19(2), pages 611-632, June.
    10. Ganjar Alfian & Jongtae Rhee & Yong-Shin Kang & Byungun Yoon, 2015. "Performance Comparison of Reservation Based and Instant Access One-Way Car Sharing Service through Discrete Event Simulation," Sustainability, MDPI, vol. 7(9), pages 1-25, September.
    11. Yang, Jie & Hu, Lu & Jiang, Yangsheng, 2022. "An overnight relocation problem for one-way carsharing systems considering employment planning, return restrictions, and ride sharing of temporary workers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    12. Çalık, Hatice & Fortz, Bernard, 2019. "A Benders decomposition method for locating stations in a one-way electric car sharing system under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 121-150.
    13. Huang, Kai & An, Kun & Correia, Gonçalo Homem de Almeida, 2020. "Planning station capacity and fleet size of one-way electric carsharing systems with continuous state of charge functions," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1075-1091.
    14. Nourinejad, Mehdi & Roorda, Matthew J., 2014. "A dynamic carsharing decision support system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 66(C), pages 36-50.
    15. Hadi Charkhgard & Mahdi Takalloo & Zulqarnain Haider, 2020. "Bi-objective autonomous vehicle repositioning problem with travel time uncertainty," 4OR, Springer, vol. 18(4), pages 477-505, December.
    16. Mehdi Nourinejad & Matthew Roorda, 2015. "Carsharing operations policies: a comparison between one-way and two-way systems," Transportation, Springer, vol. 42(3), pages 497-518, May.
    17. Gilbert Laporte & Frédéric Meunier & Roberto Wolfler Calvo, 2018. "Shared mobility systems: an updated survey," Annals of Operations Research, Springer, vol. 271(1), pages 105-126, December.
    18. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    19. Huang, Kai & An, Kun & Rich, Jeppe & Ma, Wanjing, 2020. "Vehicle relocation in one-way station-based electric carsharing systems: A comparative study of operator-based and user-based methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    20. Philipp Ströhle & Christoph M. Flath & Johannes Gärttner, 2019. "Leveraging Customer Flexibility for Car-Sharing Fleet Optimization," Service Science, INFORMS, vol. 53(1), pages 42-61, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:93:y:2016:i:c:p:115-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.