IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v141y2020icp35-50.html
   My bibliography  Save this article

A two-stage framework for fair autonomous robot deployment using virtual forces

Author

Listed:
  • Sallam, Gamal
  • Baroudi, Uthman

Abstract

Consider a set of landmarks that are distributed in an emergency scene and each needs a specific number of robots in its vicinity. This paper presents a two-stage framework for deploying robots autonomously for such scenarios. In the first stage, a Two-hop Cooperative Virtual Force Robot Deployment (Two-hop COVER) technique is employed. It expedites the deployment process by establishing a cooperative relationship between robots and neighboring landmarks. Two-hop communication is utilized as well to reduce the deployment time and traveled distance by robots to satisfy the mission requirements and optimize the deployment process. However, in certain scenarios, Two-hop COVER may not achieve full demand satisfaction. Therefore, the second stage, called Trace Fingerprint is invoked to guarantee full satisfaction. Finally, a fairness-aware version of Two-hop COVER is presented to consider scenarios in which the mission requirements are greater than the available resources (i.e. robots) and hence, the fairness-aware approach dispatches robots in proportion to each landmark's need. Extensive simulation experiments have been carried out to assess the performance of the proposed framework. The simulation results demonstrate the effectiveness of the proposed approaches considering several performance factors, such as total travelled distance, total exchanged messages, total deployment time, and Jain's fairness index.

Suggested Citation

  • Sallam, Gamal & Baroudi, Uthman, 2020. "A two-stage framework for fair autonomous robot deployment using virtual forces," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 35-50.
  • Handle: RePEc:eee:transa:v:141:y:2020:i:c:p:35-50
    DOI: 10.1016/j.tra.2020.08.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856420306935
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.08.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheehan, Barry & Murphy, Finbarr & Mullins, Martin & Ryan, Cian, 2019. "Connected and autonomous vehicles: A cyber-risk classification framework," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 523-536.
    2. H. W. Kuhn, 1955. "The Hungarian method for the assignment problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 83-97, March.
    3. Fagnant, Daniel J. & Kockelman, Kara, 2015. "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 167-181.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikitas, Alexandros & Parkinson, Simon & Vallati, Mauro, 2022. "The deceitful Connected and Autonomous Vehicle: Defining the concept, contextualising its dimensions and proposing mitigation policies," Transport Policy, Elsevier, vol. 122(C), pages 1-10.
    2. Jannusch, Tim & David-Spickermann, Florian & Shannon, Darren & Ressel, Juliane & Völler, Michaele & Murphy, Finbarr & Furxhi, Irini & Cunneen, Martin & Mullins, Martin, 2021. "Surveillance and privacy – Beyond the panopticon. An exploration of 720-degree observation in level 3 and 4 vehicle automation," Technology in Society, Elsevier, vol. 66(C).
    3. Lee, Dasom & Hess, David J., 2020. "Regulations for on-road testing of connected and automated vehicles: Assessing the potential for global safety harmonization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 85-98.
    4. Jiang, Like & Chen, Haibo & Chen, Zhiyang, 2022. "City readiness for connected and autonomous vehicles: A multi-stakeholder and multi-criteria analysis through analytic hierarchy process," Transport Policy, Elsevier, vol. 128(C), pages 13-24.
    5. Weiqiang Shen & Chuanlin Zhang & Xiaona Zhang & Jinglun Shi, 2019. "A fully distributed deployment algorithm for underwater strong k-barrier coverage using mobile sensors," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    6. Bo Cowgill & Jonathan M. V. Davis & B. Pablo Montagnes & Patryk Perkowski, 2024. "Stable Matching on the Job? Theory and Evidence on Internal Talent Markets," CESifo Working Paper Series 11120, CESifo.
    7. Xu, Zhengtian & Yin, Yafeng & Zha, Liteng, 2017. "Optimal parking provision for ride-sourcing services," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 559-578.
    8. Tscharaktschiew, Stefan & Reimann, Felix, 2021. "On employer-paid parking and parking (cash-out) policy: A formal synthesis of different perspectives," Transport Policy, Elsevier, vol. 110(C), pages 499-516.
    9. Kolarova, Viktoriya & Steck, Felix & Bahamonde-Birke, Francisco J., 2019. "Assessing the effect of autonomous driving on value of travel time savings: A comparison between current and future preferences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 155-169.
    10. András Frank, 2005. "On Kuhn's Hungarian Method—A tribute from Hungary," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 2-5, February.
    11. Weihua Yang & Xu Zhang & Xia Wang, 2024. "The Wasserstein Metric between a Discrete Probability Measure and a Continuous One," Mathematics, MDPI, vol. 12(15), pages 1-13, July.
    12. Pons-Prats, Jordi & Živojinović, Tanja & Kuljanin, Jovana, 2022. "On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    13. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    14. Gurumurthy, Krishna Murthy & Kockelman, Kara M., 2021. "Impacts of shared automated vehicles on airport access and operations, with opportunities for revenue recovery: Case Study of Austin, Texas," Research in Transportation Economics, Elsevier, vol. 90(C).
    15. Nordhoff, Sina & Stapel, Jork & van Arem, Bart & Happee, Riender, 2020. "Passenger opinions of the perceived safety and interaction with automated shuttles: A test ride study with ‘hidden’ safety steward," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 508-524.
    16. Nisse, Nicolas & Salch, Alexandre & Weber, Valentin, 2023. "Recovery of disrupted airline operations using k-maximum matching in graphs," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1061-1072.
    17. Parvin Ahmadi & Iman Gholampour & Mahmoud Tabandeh, 2018. "Cluster-based sparse topical coding for topic mining and document clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 537-558, September.
    18. Kassens-Noor, Eva & Cai, Meng & Kotval-Karamchandani, Zeenat & Decaminada, Travis, 2021. "Autonomous vehicles and mobility for people with special needs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 385-397.
    19. Lavoie, Brenden & Ong, Felita & Habib, Khandker Nurul, 2024. "Relax on the way to work or work on the way to relax? Influences of vehicle interior on travel time perceptions in autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    20. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:141:y:2020:i:c:p:35-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.