IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v136y2020icp293-317.html
   My bibliography  Save this article

A multi-modal network equilibrium model with captive mode choice and path size logit route choice

Author

Listed:
  • Wang, Guangchao
  • Chen, Anthony
  • Kitthamkesorn, Songyot
  • Ryu, Seungkyu
  • Qi, Hang
  • Song, Ziqi
  • Song, Jianguo

Abstract

In this paper, we consider captive mode travelers (those who have no other choices but rely on one specific travel mode for daily commuting trips) in a multi-modal network equilibrium (MMNE) problem. Specifically, the dogit model is adopted to account for captive mode travelers in the modal split problem, and the path-size logit (PSL) model is used to capture route overlapping effects in the traffic assignment problem. The dogit-PSL MMNE model is formulated as an equivalent entropy-based mathematical programming (MP) problem, which admits solution existence and uniqueness. Three numerical examples are provided. The first example examines the effects of mode captivity and route overlapping on network performances and observes that accounting for captive mode travelers would produce different equilibrium states and hence the network performance indicators. The second example applies the dogit-PSL MMNE model for evaluating the exclusive bus lane (EBL) expansion plans, in which a consistent synthetic proportional index is proposed. Numerical results show that considering mode captivity may produce substantial impacts on the odds (up to 50 percent of odds in the given scenarios) of making different EBL line expansion decisions. The third example implements the dogit-PSL MMNE model in the Seoul network to show the applicability of the dogit-PSL MMNE model in a real-size multi-modal system.

Suggested Citation

  • Wang, Guangchao & Chen, Anthony & Kitthamkesorn, Songyot & Ryu, Seungkyu & Qi, Hang & Song, Ziqi & Song, Jianguo, 2020. "A multi-modal network equilibrium model with captive mode choice and path size logit route choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 293-317.
  • Handle: RePEc:eee:transa:v:136:y:2020:i:c:p:293-317
    DOI: 10.1016/j.tra.2020.03.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856419314223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.03.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Jia & Cheng, Zhanhong & Shi, Feng & An, Shi & Wang, Jian, 2018. "Evaluation of exclusive bus lanes in a tri-modal road network incorporating carpooling behavior," Transport Policy, Elsevier, vol. 68(C), pages 130-141.
    2. Marc J. I. Gaudry, 1980. "Dogit and Logit Models of Travel Mode Choice in Montreal," Canadian Journal of Economics, Canadian Economics Association, vol. 13(2), pages 268-279, May.
    3. van Exel, N. Job A. & Rietveld, Piet, 2001. "Public transport strikes and traveller behaviour," Transport Policy, Elsevier, vol. 8(4), pages 237-246, October.
    4. Michael Florian, 1977. "A Traffic Equilibrium Model of Travel by Car and Public Transit Modes," Transportation Science, INFORMS, vol. 11(2), pages 166-179, May.
    5. Gaudry, Marc J. I. & Wills, Michael J., 1979. "Testing the dogit model with aggregate time-series and cross-sectional travel data," Transportation Research Part B: Methodological, Elsevier, vol. 13(2), pages 155-166, June.
    6. Henry Liu & Xiaozheng He & Bingsheng He, 2009. "Method of Successive Weighted Averages (MSWA) and Self-Regulated Averaging Schemes for Solving Stochastic User Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 9(4), pages 485-503, December.
    7. Williams, H. C. W. L. & Ortuzar, J. D., 1982. "Behavioural theories of dispersion and the mis-specification of travel demand models," Transportation Research Part B: Methodological, Elsevier, vol. 16(3), pages 167-219, June.
    8. Gaudry, Marc J.I., 1981. "The inverse power transformation logit and dogit mode choice models," Transportation Research Part B: Methodological, Elsevier, vol. 15(2), pages 97-103, April.
    9. Liu, Zhiyuan & Chen, Xinyuan & Meng, Qiang & Kim, Inhi, 2018. "Remote park-and-ride network equilibrium model and its applications," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 37-62.
    10. Abdulaal, Mustafa & LeBlanc, Larry J., 1979. "Continuous equilibrium network design models," Transportation Research Part B: Methodological, Elsevier, vol. 13(1), pages 19-32, March.
    11. Ampol Karoonsoontawong & Dung-Ying Lin, 2015. "Combined Gravity Model Trip Distribution and Paired Combinatorial Logit Stochastic User Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 15(4), pages 1011-1048, December.
    12. Giulio Erberto Cantarella, 1997. "A General Fixed-Point Approach to Multimode Multi-User Equilibrium Assignment with Elastic Demand," Transportation Science, INFORMS, vol. 31(2), pages 107-128, May.
    13. Chen, Anthony & Choi, Keechoo, 2017. "Solving the combined modal split and traffic assignment problem with two types of transit impedance functionAuthor-Name: Ryu, Seungkyu," European Journal of Operational Research, Elsevier, vol. 257(3), pages 870-880.
    14. Swait, Joffre & Ben-Akiva, Moshe, 1987. "Empirical test of a constrained choice discrete model: Mode choice in São Paulo, Brazil," Transportation Research Part B: Methodological, Elsevier, vol. 21(2), pages 103-115, April.
    15. Yu, Qian & Fang, Debin & Du, Wei, 2014. "Solving the logit-based stochastic user equilibrium problem with elastic demand based on the extended traffic network model," European Journal of Operational Research, Elsevier, vol. 239(1), pages 112-118.
    16. Kitthamkesorn, Songyot & Chen, Anthony, 2017. "Alternate weibit-based model for assessing green transport systems with combined mode and route travel choices," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 291-310.
    17. Damberg, Olof & Lundgren, Jan T. & Patriksson, Michael, 1996. "An algorithm for the stochastic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 30(2), pages 115-131, April.
    18. W. Y. Szeto & Xiaoqing Jaber & S. C. Wong, 2012. "Road Network Equilibrium Approaches to Environmental Sustainability," Transport Reviews, Taylor & Francis Journals, vol. 32(4), pages 491-518, April.
    19. Chen, Anthony & Lo, Hong K. & Yang, Hai, 2001. "A self-adaptive projection and contraction algorithm for the traffic assignment problem with path-specific costs," European Journal of Operational Research, Elsevier, vol. 135(1), pages 27-41, November.
    20. Zhou, Bojian & Li, Xuhong & He, Jie, 2014. "Exploring trust region method for the solution of logit-based stochastic user equilibrium problem," European Journal of Operational Research, Elsevier, vol. 239(1), pages 46-57.
    21. Gaundry, Marc J. I. & Dagenais, Marcel G., 1979. "The dogit model," Transportation Research Part B: Methodological, Elsevier, vol. 13(2), pages 105-111, June.
    22. Cynthia Jacques & Kevin Manaugh & Ahmed El-Geneidy, 2013. "Rescuing the captive [mode] user: an alternative approach to transport market segmentation," Transportation, Springer, vol. 40(3), pages 625-645, May.
    23. Martínez, Francisco & Aguila, Felipe & Hurtubia, Ricardo, 2009. "The constrained multinomial logit: A semi-compensatory choice model," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 365-377, March.
    24. Maher, Mike, 1998. "Algorithms for logit-based stochastic user equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 539-549, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Songyot Kitthamkesorn & Anthony Chen, 2024. "Stochastic User Equilibrium Model with a Bounded Perceived Travel Time," Papers 2402.18435, arXiv.org.
    2. Ye, Jiao & Jiang, Yu & Chen, Jun & Liu, Zhiyuan & Guo, Renzhong, 2021. "Joint optimisation of transfer location and capacity for a capacitated multimodal transport network with elastic demand: a bi-level programming model and paradoxes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    3. Hou, Weilu & Shi, Qin & Guo, Liquan, 2022. "Impacts of COVID-19 pandemic on foreign trade intermodal transport accessibility: Evidence from the Yangtze River Delta region of mainland China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 419-438.
    4. Fan, Yinchao & Ding, Jianxun & Long, Jiancheng & Wu, Jianjun, 2024. "Modeling and evaluating the travel behaviour in multimodal networks: A path-based unified equilibrium model and a tailored greedy solution algorithm," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    5. Guan, Xiaodong & Wang, Donggen, 2024. "Examining the roles of transport captivity and travel dissonance in travel satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    6. Mori, Kentaro & Miwa, Tomio & Abe, Ryosuke & Morikawa, Takayuki, 2022. "Equilibrium analysis of trip demand for autonomous taxi services in Nagoya, Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 476-498.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Muqing & Tan, Heqing & Chen, Anthony, 2021. "A faster path-based algorithm with Barzilai-Borwein step size for solving stochastic traffic equilibrium models," European Journal of Operational Research, Elsevier, vol. 290(3), pages 982-999.
    2. Li, Guoyuan & Chen, Anthony, 2023. "Strategy-based transit stochastic user equilibrium model with capacity and number-of-transfers constraints," European Journal of Operational Research, Elsevier, vol. 305(1), pages 164-183.
    3. Kitthamkesorn, Songyot & Chen, Anthony, 2017. "Alternate weibit-based model for assessing green transport systems with combined mode and route travel choices," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 291-310.
    4. Li, Guoyuan & Chen, Anthony & Ryu, Seungkyu & Kitthamkesorn, Songyot & Xu, Xiangdong, 2024. "Modeling elasticity, similarity, stochasticity, and congestion in a network equilibrium framework using a paired combinatorial weibit choice model," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    5. Ahipaşaoğlu, Selin Damla & Meskarian, Rudabeh & Magnanti, Thomas L. & Natarajan, Karthik, 2015. "Beyond normality: A cross moment-stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 333-354.
    6. Ma, Jie & Meng, Qiang & Cheng, Lin & Liu, Zhiyuan, 2022. "General stochastic ridesharing user equilibrium problem with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 162-194.
    7. Honggang Zhang & Zhiyuan Liu & Yicheng Zhang & Weijie Chen & Chenyang Zhang, 2024. "A Distributed Computing Method Integrating Improved Gradient Projection for Solving Stochastic Traffic Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 24(2), pages 361-381, June.
    8. Yao, Jia & Chen, Anthony & Ryu, Seungkyu & Shi, Feng, 2014. "A general unconstrained optimization formulation for the combined distribution and assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 137-160.
    9. Fry, Tim R. L. & Harris, Mark N., 1996. "A Monte Carlo study of tests for the independence of irrelevant alternatives property," Transportation Research Part B: Methodological, Elsevier, vol. 30(1), pages 19-30, February.
    10. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun, 2014. "A bi-objective turning restriction design problem in urban road networks," European Journal of Operational Research, Elsevier, vol. 237(2), pages 426-439.
    11. Chen, Anthony & Choi, Keechoo, 2017. "Solving the combined modal split and traffic assignment problem with two types of transit impedance functionAuthor-Name: Ryu, Seungkyu," European Journal of Operational Research, Elsevier, vol. 257(3), pages 870-880.
    12. Fan, Yinchao & Ding, Jianxun & Liu, Haoxiang & Wang, Yu & Long, Jiancheng, 2022. "Large-scale multimodal transportation network models and algorithms-Part I: The combined mode split and traffic assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    13. Fan, Yinchao & Ding, Jianxun & Long, Jiancheng & Wu, Jianjun, 2024. "Modeling and evaluating the travel behaviour in multimodal networks: A path-based unified equilibrium model and a tailored greedy solution algorithm," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    14. Guido Gentile, 2018. "New Formulations of the Stochastic User Equilibrium with Logit Route Choice as an Extension of the Deterministic Model," Service Science, INFORMS, vol. 52(6), pages 1531-1547, December.
    15. Nchare, Karim, 2021. "Dogit model and rational inattention," Economics Letters, Elsevier, vol. 205(C).
    16. Ampol Karoonsoontawong & Dung-Ying Lin, 2015. "Combined Gravity Model Trip Distribution and Paired Combinatorial Logit Stochastic User Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 15(4), pages 1011-1048, December.
    17. Cascetta, Ennio & Papola, Andrea, 2009. "Dominance among alternatives in random utility models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(2), pages 170-179, February.
    18. Gu, Yu & Chen, Anthony & Kitthamkesorn, Songyot, 2024. "Modeling shared parking services at spatially correlated locations through a weibit-based combined destination and parking choice equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    19. Rasmussen, Thomas Kjær & Watling, David Paul & Prato, Carlo Giacomo & Nielsen, Otto Anker, 2015. "Stochastic user equilibrium with equilibrated choice sets: Part II – Solving the restricted SUE for the logit family," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 146-165.
    20. Xie, Chi & Travis Waller, S., 2012. "Stochastic traffic assignment, Lagrangian dual, and unconstrained convex optimization," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1023-1042.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:136:y:2020:i:c:p:293-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.