IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v239y2014i1p46-57.html
   My bibliography  Save this article

Exploring trust region method for the solution of logit-based stochastic user equilibrium problem

Author

Listed:
  • Zhou, Bojian
  • Li, Xuhong
  • He, Jie

Abstract

In this research paper, we explored using the trust region method to solve the logit-based SUE problem. We proposed a modified trust region Newton (MTRN) algorithm for this problem. When solving the trust region SUE subproblem, we showed that applying the well-known Steihaug-Toint method is inappropriate, since it may make the convergence rate of the major iteration very slow in the early stage of the computation. To overcome this drawback, a modified Steihaug-Toint method was proposed. We proved the convergence of our MTRN algorithm and showed its convergence rate is superlinear.

Suggested Citation

  • Zhou, Bojian & Li, Xuhong & He, Jie, 2014. "Exploring trust region method for the solution of logit-based stochastic user equilibrium problem," European Journal of Operational Research, Elsevier, vol. 239(1), pages 46-57.
  • Handle: RePEc:eee:ejores:v:239:y:2014:i:1:p:46-57
    DOI: 10.1016/j.ejor.2014.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714003932
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisk, Caroline, 1980. "Some developments in equilibrium traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 243-255, September.
    2. Mingyuan Chen & Attahiru Sule Alfa, 1991. "Algorithms for solving fisk's stochastic traffic assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 405-412, December.
    3. Azevedo, JoseAugusto & Santos Costa, Maria Emilia O. & Silvestre Madeira, Joaquim Joao E. R. & Vieira Martins, Ernesto Q., 1993. "An algorithm for the ranking of shortest paths," European Journal of Operational Research, Elsevier, vol. 69(1), pages 97-106, August.
    4. Leurent, Fabien M., 1997. "Curbing the computational difficulty of the logit equilibrium assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 31(4), pages 315-326, August.
    5. Akamatsu, Takashi, 1996. "Cyclic flows, Markov process and stochastic traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 30(5), pages 369-386, October.
    6. Carlos F. Daganzo & Yosef Sheffi, 1977. "On Stochastic Models of Traffic Assignment," Transportation Science, INFORMS, vol. 11(3), pages 253-274, August.
    7. Bekhor, Shlomo & Toledo, Tomer, 2005. "Investigating path-based solution algorithms to the stochastic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 39(3), pages 279-295, March.
    8. Ghatee, Mehdi & Hashemi, S. Mehdi, 2009. "Traffic assignment model with fuzzy level of travel demand: An efficient algorithm based on quasi-Logit formulas," European Journal of Operational Research, Elsevier, vol. 194(2), pages 432-451, April.
    9. Zhou, Zhong & Chen, Anthony & Wong, S.C., 2009. "Alternative formulations of a combined trip generation, trip distribution, modal split, and trip assignment model," European Journal of Operational Research, Elsevier, vol. 198(1), pages 129-138, October.
    10. Haase, Knut & Müller, Sven, 2014. "A comparison of linear reformulations for multinomial logit choice probabilities in facility location models," European Journal of Operational Research, Elsevier, vol. 232(3), pages 689-691.
    11. Shlomo Bekhor & Moshe Ben-Akiva & M. Ramming, 2006. "Evaluation of choice set generation algorithms for route choice models," Annals of Operations Research, Springer, vol. 144(1), pages 235-247, April.
    12. Maher, Mike, 1998. "Algorithms for logit-based stochastic user equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 539-549, November.
    13. Guo, Xiaolei & Yang, Hai & Liu, Tian-Liang, 2010. "Bounding the inefficiency of logit-based stochastic user equilibrium," European Journal of Operational Research, Elsevier, vol. 201(2), pages 463-469, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Anthony & Choi, Keechoo, 2017. "Solving the combined modal split and traffic assignment problem with two types of transit impedance functionAuthor-Name: Ryu, Seungkyu," European Journal of Operational Research, Elsevier, vol. 257(3), pages 870-880.
    2. Honggang Zhang & Zhiyuan Liu & Yicheng Zhang & Weijie Chen & Chenyang Zhang, 2024. "A Distributed Computing Method Integrating Improved Gradient Projection for Solving Stochastic Traffic Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 24(2), pages 361-381, June.
    3. Wang, Guangchao & Chen, Anthony & Kitthamkesorn, Songyot & Ryu, Seungkyu & Qi, Hang & Song, Ziqi & Song, Jianguo, 2020. "A multi-modal network equilibrium model with captive mode choice and path size logit route choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 293-317.
    4. Du, Muqing & Tan, Heqing & Chen, Anthony, 2021. "A faster path-based algorithm with Barzilai-Borwein step size for solving stochastic traffic equilibrium models," European Journal of Operational Research, Elsevier, vol. 290(3), pages 982-999.
    5. Li, Guoyuan & Chen, Anthony, 2023. "Strategy-based transit stochastic user equilibrium model with capacity and number-of-transfers constraints," European Journal of Operational Research, Elsevier, vol. 305(1), pages 164-183.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Honggang Zhang & Zhiyuan Liu & Yicheng Zhang & Weijie Chen & Chenyang Zhang, 2024. "A Distributed Computing Method Integrating Improved Gradient Projection for Solving Stochastic Traffic Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 24(2), pages 361-381, June.
    2. Oyama, Yuki & Hara, Yusuke & Akamatsu, Takashi, 2022. "Markovian traffic equilibrium assignment based on network generalized extreme value model," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 135-159.
    3. Guido Gentile, 2018. "New Formulations of the Stochastic User Equilibrium with Logit Route Choice as an Extension of the Deterministic Model," Service Science, INFORMS, vol. 52(6), pages 1531-1547, December.
    4. Bekhor, Shlomo & Toledo, Tomer, 2005. "Investigating path-based solution algorithms to the stochastic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 39(3), pages 279-295, March.
    5. Tan, Heqing & Xu, Xiangdong & Chen, Anthony, 2024. "On endogenously distinguishing inactive paths in stochastic user equilibrium: A convex programming approach with a truncated path choice model," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    6. Ahipaşaoğlu, Selin Damla & Meskarian, Rudabeh & Magnanti, Thomas L. & Natarajan, Karthik, 2015. "Beyond normality: A cross moment-stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 333-354.
    7. Du, Muqing & Tan, Heqing & Chen, Anthony, 2021. "A faster path-based algorithm with Barzilai-Borwein step size for solving stochastic traffic equilibrium models," European Journal of Operational Research, Elsevier, vol. 290(3), pages 982-999.
    8. Chen, Anthony & Pravinvongvuth, Surachet & Xu, Xiangdong & Ryu, Seungkyu & Chootinan, Piya, 2012. "Examining the scaling effect and overlapping problem in logit-based stochastic user equilibrium models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1343-1358.
    9. Rasmussen, Thomas Kjær & Watling, David Paul & Prato, Carlo Giacomo & Nielsen, Otto Anker, 2015. "Stochastic user equilibrium with equilibrated choice sets: Part II – Solving the restricted SUE for the logit family," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 146-165.
    10. E. Nikolova & N. E. Stier-Moses, 2014. "A Mean-Risk Model for the Traffic Assignment Problem with Stochastic Travel Times," Operations Research, INFORMS, vol. 62(2), pages 366-382, April.
    11. Maher, Mike, 1998. "Algorithms for logit-based stochastic user equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 539-549, November.
    12. Bliemer, Michiel C.J. & Raadsen, Mark P.H. & Smits, Erik-Sander & Zhou, Bojian & Bell, Michael G.H., 2014. "Quasi-dynamic traffic assignment with residual point queues incorporating a first order node model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 363-384.
    13. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun, 2014. "A bi-objective turning restriction design problem in urban road networks," European Journal of Operational Research, Elsevier, vol. 237(2), pages 426-439.
    14. Selin Damla Ahipaşaoğlu & Uğur Arıkan & Karthik Natarajan, 2019. "Distributionally Robust Markovian Traffic Equilibrium," Transportation Science, INFORMS, vol. 53(6), pages 1546-1562, November.
    15. Kitthamkesorn, Songyot & Chen, Anthony, 2014. "Unconstrained weibit stochastic user equilibrium model with extensions," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 1-21.
    16. Xie, Chi & Travis Waller, S., 2012. "Stochastic traffic assignment, Lagrangian dual, and unconstrained convex optimization," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1023-1042.
    17. Long, Jiancheng & Gao, Ziyou & Zhang, Haozhi & Szeto, W.Y., 2010. "A turning restriction design problem in urban road networks," European Journal of Operational Research, Elsevier, vol. 206(3), pages 569-578, November.
    18. Ampol Karoonsoontawong & Dung-Ying Lin, 2015. "Combined Gravity Model Trip Distribution and Paired Combinatorial Logit Stochastic User Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 15(4), pages 1011-1048, December.
    19. Evanthia Kazagli & Michel Bierlaire & Matthieu de Lapparent, 2020. "Operational route choice methodologies for practical applications," Transportation, Springer, vol. 47(1), pages 43-74, February.
    20. Mengying Cui & David Levinson, 2021. "Shortest paths, travel costs, and traffic," Environment and Planning B, , vol. 48(4), pages 828-844, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:239:y:2014:i:1:p:46-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.