IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v136y2020icp151-177.html
   My bibliography  Save this article

The value of physical distribution flexibility in serving dense and uncertain urban markets

Author

Listed:
  • Snoeck, André
  • Winkenbach, Matthias

Abstract

Urban last-mile distribution in emerging economies suffers from unique levels of operational complexity, largely due to the prevailing dominance of the highly fragmented traditional retail channel. To support companies in strategically designing efficient urban distribution networks in such uncertain market environments, we propose a large-scale stochastic mixed integer linear programming model that incorporates three commonly deployed measures of physical distribution flexibility. Being able to flexibly adjust transportation capacities, facility capacities, and demand allocations may enable companies to serve urban markets more efficiently, especially in the presence of demand uncertainty. The model supports strategic network design decisions by optimizing the number, type, and capacity of distribution facilities as well as the composition of corresponding vehicle fleets. We apply the model to two large-scale, real-world case studies based on real data from Coca-Cola Femsa’s last-mile operations in Bogotá and Cali, Colombia. These case studies are representative for many last-mile distribution problems in emerging market megacities. Our numerical results demonstrate how considering stochasticity and incorporating physical distribution flexibility in the strategic design of urban last-mile distribution networks jointly and independently affect the resulting network design and improve its commercial and operational performance. The stochastic design approach outperforms the deterministic design approach on every instance in terms of expected cost and performance risk. In most cases, physical distribution flexibility improves performance. However, we show that in some cases, if strategic decisions are based on deterministic assumptions, allowing for operational flexibility may result in a deterioration in network performance.

Suggested Citation

  • Snoeck, André & Winkenbach, Matthias, 2020. "The value of physical distribution flexibility in serving dense and uncertain urban markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 151-177.
  • Handle: RePEc:eee:transa:v:136:y:2020:i:c:p:151-177
    DOI: 10.1016/j.tra.2020.02.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856419301466
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.02.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Madsen, Oli B. G., 1983. "Methods for solving combined two level location-routing problems of realistic dimensions," European Journal of Operational Research, Elsevier, vol. 12(3), pages 295-301, March.
    2. Quanwu Zhao & Wei Wang & Robert De Souza, 2018. "A heterogeneous fleet two-echelon capacitated location-routing model for joint delivery arising in city logistics," International Journal of Production Research, Taylor & Francis Journals, vol. 56(15), pages 5062-5080, August.
    3. Julia L. Higle & Stein W. Wallace, 2003. "Sensitivity Analysis and Uncertainty in Linear Programming," Interfaces, INFORMS, vol. 33(4), pages 53-60, August.
    4. Tobias Harks & Felix G König & Jannik Matuschke, 2013. "Approximation Algorithms for Capacitated Location Routing," Transportation Science, INFORMS, vol. 47(1), pages 3-22, February.
    5. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "A review of recent research on green road freight transportation," European Journal of Operational Research, Elsevier, vol. 237(3), pages 775-793.
    6. Uchoa, Eduardo & Pecin, Diego & Pessoa, Artur & Poggi, Marcus & Vidal, Thibaut & Subramanian, Anand, 2017. "New benchmark instances for the Capacitated Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 257(3), pages 845-858.
    7. Nagy, Gabor & Salhi, Said, 2007. "Location-routing: Issues, models and methods," European Journal of Operational Research, Elsevier, vol. 177(2), pages 649-672, March.
    8. Janjevic, Milena & Winkenbach, Matthias & Merchán, Daniel, 2019. "Integrating collection-and-delivery points in the strategic design of urban last-mile e-commerce distribution networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 37-67.
    9. Schiffer, Maximilian & Walther, Grit, 2018. "Strategic planning of electric logistics fleet networks: A robust location-routing approach," Omega, Elsevier, vol. 80(C), pages 31-42.
    10. Michael Schneider & Michael Drexl, 2017. "A survey of the standard location-routing problem," Annals of Operations Research, Springer, vol. 259(1), pages 389-414, December.
    11. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    12. Snoeck, André & Udenio, Maximiliano & Fransoo, Jan C., 2019. "A stochastic program to evaluate disruption mitigation investments in the supply chain," European Journal of Operational Research, Elsevier, vol. 274(2), pages 516-530.
    13. Taniguchi, Eiichi & Noritake, Michihiko & Yamada, Tadashi & Izumitani, Toru, 1999. "Optimal size and location planning of public logistics terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 35(3), pages 207-222, September.
    14. Carlos F. Daganzo, 2005. "Logistics Systems Analysis," Springer Books, Springer, edition 0, number 978-3-540-27516-9, January.
    15. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    16. Klibi, Walid & Martel, Alain & Guitouni, Adel, 2010. "The design of robust value-creating supply chain networks: A critical review," European Journal of Operational Research, Elsevier, vol. 203(2), pages 283-293, June.
    17. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    18. Nima Hamta & M. Akbarpour Shirazi & S.M.T. Fatemi Ghomi & Sara Behdad, 2015. "Supply chain network optimization considering assembly line balancing and demand uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 53(10), pages 2970-2994, May.
    19. Matthias Winkenbach & Alain Roset & Stefan Spinler, 2016. "Strategic Redesign of Urban Mail and Parcel Networks at La Poste," Interfaces, INFORMS, vol. 46(5), pages 445-458, October.
    20. Kayse Lee Maass & Mark S. Daskin & Siqian Shen, 2016. "Mitigating hard capacity constraints with inventory in facility location modeling," IISE Transactions, Taylor & Francis Journals, vol. 48(2), pages 120-133, February.
    21. Salhi, Said & Rand, Graham K., 1989. "The effect of ignoring routes when locating depots," European Journal of Operational Research, Elsevier, vol. 39(2), pages 150-156, March.
    22. Hamid Jafari, 2015. "Logistics flexibility: a systematic review," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 64(7), pages 947-970, September.
    23. Teodor Gabriel Crainic & Nicoletta Ricciardi & Giovanni Storchi, 2009. "Models for Evaluating and Planning City Logistics Systems," Transportation Science, INFORMS, vol. 43(4), pages 432-454, November.
    24. Edward L. Glaeser & Matt Resseger & Kristina Tobio, 2009. "Inequality In Cities," Journal of Regional Science, Wiley Blackwell, vol. 49(4), pages 617-646, October.
    25. Jacobsen, S. K. & Madsen, O. B. G., 1980. "A comparative study of heuristics for a two-level routing-location problem," European Journal of Operational Research, Elsevier, vol. 5(6), pages 378-387, December.
    26. Martin Savelsbergh & Tom Van Woensel, 2016. "50th Anniversary Invited Article—City Logistics: Challenges and Opportunities," Transportation Science, INFORMS, vol. 50(2), pages 579-590, May.
    27. Schütz, Peter & Tomasgard, Asgeir & Ahmed, Shabbir, 2009. "Supply chain design under uncertainty using sample average approximation and dual decomposition," European Journal of Operational Research, Elsevier, vol. 199(2), pages 409-419, December.
    28. Arnt-Gunnar Lium & Teodor Gabriel Crainic & Stein W. Wallace, 2009. "A Study of Demand Stochasticity in Service Network Design," Transportation Science, INFORMS, vol. 43(2), pages 144-157, May.
    29. Klibi, Walid & Martel, Alain, 2012. "Modeling approaches for the design of resilient supply networks under disruptions," International Journal of Production Economics, Elsevier, vol. 135(2), pages 882-898.
    30. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    31. Francesca Maggioni & Florian A. Potra & Marida Bertocchi, 2017. "A scenario-based framework for supply planning under uncertainty: stochastic programming versus robust optimization approaches," Computational Management Science, Springer, vol. 14(1), pages 5-44, January.
    32. Prodhon, Caroline & Prins, Christian, 2014. "A survey of recent research on location-routing problems," European Journal of Operational Research, Elsevier, vol. 238(1), pages 1-17.
    33. Teodor Gabriel Crainic & Fausto Errico & Walter Rei & Nicoletta Ricciardi, 2016. "Modeling Demand Uncertainty in Two-Tier City Logistics Tactical Planning," Transportation Science, INFORMS, vol. 50(2), pages 559-578, May.
    34. Matthias Winkenbach & Paul R. Kleindorfer & Stefan Spinler, 2016. "Enabling Urban Logistics Services at La Poste through Multi-Echelon Location-Routing," Transportation Science, INFORMS, vol. 50(2), pages 520-540, May.
    35. Michael Schneider & Maximilian Löffler, 2019. "Large Composite Neighborhoods for the Capacitated Location-Routing Problem," Service Science, INFORMS, vol. 53(1), pages 301-318, February.
    36. Ballou, Ronald H. & Rahardja, Handoko & Sakai, Noriaki, 2002. "Selected country circuity factors for road travel distance estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 843-848, November.
    37. Carlos F. Daganzo, 1984. "The Distance Traveled to Visit N Points with a Maximum of C Stops per Vehicle: An Analytic Model and an Application," Transportation Science, INFORMS, vol. 18(4), pages 331-350, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Vincent F. & Jodiawan, Panca & Hou, Ming-Lu & Gunawan, Aldy, 2021. "Design of a two-echelon freight distribution system in last-mile logistics considering covering locations and occasional drivers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    2. Hess, Alexander & Spinler, Stefan & Winkenbach, Matthias, 2021. "Real-time demand forecasting for an urban delivery platform," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    3. Janjevic, Milena & Merchán, Daniel & Winkenbach, Matthias, 2021. "Designing multi-tier, multi-service-level, and multi-modal last-mile distribution networks for omni-channel operations," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1059-1077.
    4. Rogier Pennings & Bart Wiegmans & Tejo Spit, 2023. "Can We Do More with Less? Analyzing the Organization of Flexibility of Space and Infrastructure at UDCs: A Case Study for Food Center Amsterdam," Logistics, MDPI, vol. 7(4), pages 1-15, December.
    5. Schmidt, Carise E. & Silva, Arinei C.L. & Darvish, Maryam & Coelho, Leandro C., 2023. "Time-dependent fleet size and mix multi-depot vehicle routing problem," International Journal of Production Economics, Elsevier, vol. 255(C).
    6. Jafari, Hamid & Eslami, Mohammad H. & Paulraj, Antony, 2022. "Postponement and logistics flexibility in retailing: The moderating role of logistics integration and demand uncertainty," International Journal of Production Economics, Elsevier, vol. 243(C).
    7. Snoeck, André & Winkenbach, Matthias & Fransoo, Jan C., 2023. "On-demand last-mile distribution network design with omnichannel inventory," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    8. Merkert, Rico & Beck, Matthew J. & Bushell, James, 2021. "Will It Fly? Adoption of the road pricing framework to manage drone use of airspace," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 156-170.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Mohamed, Imen & Klibi, Walid & Sadykov, Ruslan & Şen, Halil & Vanderbeck, François, 2023. "The two-echelon stochastic multi-period capacitated location-routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 645-667.
    2. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    3. Janjevic, Milena & Merchán, Daniel & Winkenbach, Matthias, 2021. "Designing multi-tier, multi-service-level, and multi-modal last-mile distribution networks for omni-channel operations," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1059-1077.
    4. Janjevic, Milena & Winkenbach, Matthias & Merchán, Daniel, 2019. "Integrating collection-and-delivery points in the strategic design of urban last-mile e-commerce distribution networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 37-67.
    5. Matthias Winkenbach & Paul R. Kleindorfer & Stefan Spinler, 2016. "Enabling Urban Logistics Services at La Poste through Multi-Echelon Location-Routing," Transportation Science, INFORMS, vol. 50(2), pages 520-540, May.
    6. Yu, Vincent F. & Jodiawan, Panca & Hou, Ming-Lu & Gunawan, Aldy, 2021. "Design of a two-echelon freight distribution system in last-mile logistics considering covering locations and occasional drivers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    7. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    8. Zhu, Stuart X. & Ursavas, Evrim, 2018. "Design and analysis of a satellite network with direct delivery in the pharmaceutical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 190-207.
    9. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    10. Merchán, Daniel & Winkenbach, Matthias & Snoeck, André, 2020. "Quantifying the impact of urban road networks on the efficiency of local trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 38-62.
    11. Schaumann, Sarah K. & Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2023. "Route efficiency implications of time windows and vehicle capacities in first- and last-mile logistics," European Journal of Operational Research, Elsevier, vol. 311(1), pages 88-111.
    12. Carrasco Heine, Oscar F. & Demleitner, Antonia & Matuschke, Jannik, 2023. "Bifactor approximation for location routing with vehicle and facility capacities," European Journal of Operational Research, Elsevier, vol. 304(2), pages 429-442.
    13. Faugère, Louis & Klibi, Walid & White, Chelsea & Montreuil, Benoit, 2022. "Dynamic pooled capacity deployment for urban parcel logistics," European Journal of Operational Research, Elsevier, vol. 303(2), pages 650-667.
    14. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    15. Gläser, Sina, 2022. "A waste collection problem with service type option," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1216-1230.
    16. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    17. Younes Rahmani & Wahiba Ramdane Cherif-Khettaf & Ammar Oulamara, 2016. "The two-echelon multi-products location-routing problem with pickup and delivery: formulation and heuristic approaches," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 999-1019, February.
    18. Snoeck, André & Udenio, Maximiliano & Fransoo, Jan C., 2019. "A stochastic program to evaluate disruption mitigation investments in the supply chain," European Journal of Operational Research, Elsevier, vol. 274(2), pages 516-530.
    19. Schwerdfeger, Stefan & Boysen, Nils, 2020. "Optimizing the changing locations of mobile parcel lockers in last-mile distribution," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1077-1094.
    20. Wang, Congke & Liu, Yankui & Yang, Guoqing, 2023. "Adaptive distributionally robust hub location and routing problem with a third-party logistics strategy," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:136:y:2020:i:c:p:151-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.