IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v56y2018i15p5062-5080.html
   My bibliography  Save this article

A heterogeneous fleet two-echelon capacitated location-routing model for joint delivery arising in city logistics

Author

Listed:
  • Quanwu Zhao
  • Wei Wang
  • Robert De Souza

Abstract

This paper focuses on optimisation issue in designing urban logistics network for joint delivery alliances in parcel delivery industry, explicitly taking into account heterogeneous fleet and practices of joint delivery alliances in China. The objective is to determine the set of Intermediate Depots (IDs) to open and the allocation of city logistics terminals to minimise a total cost comprised of the set-up costs of IDs and the total variable cost of routes under joint delivery. A powerful cooperative approximation heuristic algorithm is developed and a comparative analysis is performed with three published approaches based on the well-known benchmark instances in this field. The results suggest that the proposed method can find good solutions in a reasonable amount of time for most data-sets. The proposed method has also been successfully applied to an industrial case for a joint delivery alliance in Chongqing, China. Comprehensively analysis are conducted between joint delivery and separate delivery, heterogeneous and homogeneous fleets, considering the carbon emissions or not, and demand variations.

Suggested Citation

  • Quanwu Zhao & Wei Wang & Robert De Souza, 2018. "A heterogeneous fleet two-echelon capacitated location-routing model for joint delivery arising in city logistics," International Journal of Production Research, Taylor & Francis Journals, vol. 56(15), pages 5062-5080, August.
  • Handle: RePEc:taf:tprsxx:v:56:y:2018:i:15:p:5062-5080
    DOI: 10.1080/00207543.2017.1401235
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2017.1401235
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2017.1401235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Vincent F. & Jodiawan, Panca & Hou, Ming-Lu & Gunawan, Aldy, 2021. "Design of a two-echelon freight distribution system in last-mile logistics considering covering locations and occasional drivers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    2. Popkova, Elena G. & Sergi, Bruno S., 2020. "A Digital Economy to Develop Policy Related to Transport and Logistics. Predictive Lessons from Russia," Land Use Policy, Elsevier, vol. 99(C).
    3. Liu, Yubin & Ye, Qiming & Escribano-Macias, Jose & Feng, Yuxiang & Candela, Eduardo & Angeloudis, Panagiotis, 2023. "Route planning for last-mile deliveries using mobile parcel lockers: A hybrid q-learning network approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    4. Amiri, Mohsen & Amin, Saman Hassanzadeh & Tavakkoli-Moghaddam, Reza, 2019. "A Lagrangean decomposition approach for a novel two-echelon node-based location-routing problem in an offshore oil and gas supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 96-114.
    5. Ben Mohamed, Imen & Klibi, Walid & Sadykov, Ruslan & Şen, Halil & Vanderbeck, François, 2023. "The two-echelon stochastic multi-period capacitated location-routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 645-667.
    6. Lin, Na & Akkerman, Renzo & Kanellopoulos, Argyris & Hu, Xiangpei & Wang, Xuping & Ruan, Junhu, 2023. "Vehicle routing with heterogeneous service types: Optimizing post-harvest preprocessing operations for fruits and vegetables in short food supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    7. Leonor Teixeira & Ana Luísa Ramos & Carolina Costa & Dulce Pedrosa & César Faria & Carina Pimentel, 2023. "SOLFI: An Integrated Platform for Sustainable Urban Last-Mile Logistics’ Operations—Study, Design and Development," Sustainability, MDPI, vol. 15(3), pages 1-23, February.
    8. Max Leyerer & Marc-Oliver Sonneberg & Maximilian Heumann & Michael H. Breitner, 2019. "Decision support for sustainable and resilience-oriented urban parcel delivery," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 267-300, November.
    9. Snoeck, André & Winkenbach, Matthias, 2020. "The value of physical distribution flexibility in serving dense and uncertain urban markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 151-177.
    10. Janjevic, Milena & Winkenbach, Matthias & Merchán, Daniel, 2019. "Integrating collection-and-delivery points in the strategic design of urban last-mile e-commerce distribution networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 37-67.
    11. Erfan Babaee Tirkolaee & Alireza Goli & Abbas Mardani, 2023. "A novel two-echelon hierarchical location-allocation-routing optimization for green energy-efficient logistics systems," Annals of Operations Research, Springer, vol. 324(1), pages 795-823, May.
    12. Zhang, Lele & Ding, Pengyuan & Thompson, Russell G., 2023. "A stochastic formulation of the two-echelon vehicle routing and loading bay reservation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    13. Ali Heidari & Din Mohammad Imani & Mohammad Khalilzadeh & Mahdieh Sarbazvatan, 2023. "Green two-echelon closed and open location-routing problem: application of NSGA-II and MOGWO metaheuristic approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9163-9199, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:56:y:2018:i:15:p:5062-5080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.