IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v134y2020icp65-77.html
   My bibliography  Save this article

Addressing the awareness gap: A combined survey and vehicle registration analysis to assess car owners’ usage of ADAS in fleets

Author

Listed:
  • Harms, Ilse M.
  • Bingen, Leo
  • Steffens, Jasper

Abstract

Now Advanced Driver Assistant Systems (ADAS) have entered the consumer market policymakers need instruments to monitor not only the amount of ADAS-equipped cars but also whether car owners actually use these systems; a prerequisite for many ADAS to achieve road safety and/or CO2 reduction benefits. Although questionnaires provide the most common method for large scale fleet assessment, current questionnaires fall short in their ability to assess ADAS usage. Their main pitfall is that ADAS ownership – necessary to compute the gap between ADAS ownership and usage – is based on self-reported rather than actual ADAS ownership. In other words, it is implicitly presumed that car owners are aware of the ADAS with which their car is, or is not, equipped. To our knowledge, the presumption of awareness of ADAS ownership has not been acknowledged as a limitation in current questionnaire-based studies on ADAS usage. Therefore, this paper presents a methodology to address the awareness gap by combining survey and vehicle registration analysis to assess car owners’ usage of ADAS in fleets. In this method, ADAS awareness constitutes of the difference between ADAS presence based on self-report and ADAS presence based on the vehicle specifications of participants’ own car (obtained through participants’ licence plate registration number). To test both the assumption that an awareness gap exists for ADAS as well as the feasibility of the method itself, a survey was performed under 1355 Dutch business drivers. It involved ADAS such as Adaptive Cruise Control, Lane Departure Warning and Emergency Brake. The study showed that many business drivers were unaware of with which ADAS their car is equipped and as a result, they were unable to report they own the ADAS concerned. However, drivers aware of owning a specific system generally reported that they use it. Additionally, the study revealed another group of participants: those who stated owning a specific ADAS while their vehicle specifications contradict this. In conclusion, awareness of ADAS ownership constitutes an important link that is currently missing when concatenating market penetration studies and regular questionnaires on ADAS usage. The proposed method may overcome this shortcoming, increase the validity of surveys on ADAS usage and provide large scale insights in the use of ADAS throughout an entire fleet of vehicles.

Suggested Citation

  • Harms, Ilse M. & Bingen, Leo & Steffens, Jasper, 2020. "Addressing the awareness gap: A combined survey and vehicle registration analysis to assess car owners’ usage of ADAS in fleets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 65-77.
  • Handle: RePEc:eee:transa:v:134:y:2020:i:c:p:65-77
    DOI: 10.1016/j.tra.2020.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856418315817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haque, Md. Mazharul & Oviedo-Trespalacios, Oscar & Sharma, Anshuman & Zheng, Zuduo, 2021. "Examining the driver-pedestrian interaction at pedestrian crossings in the connected environment: A Hazard-based duration modelling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 33-48.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Jinxiao & Ma, Wei, 2024. "Maximin headway control of automated vehicles for system optimal dynamic traffic assignment in general networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    2. Li, Menglin & Yin, Long & Yan, Mei & Wu, Jingda & He, Hongwe & Jia, Chunchun, 2024. "Hierarchical intelligent energy-saving control strategy for fuel cell hybrid electric buses based on traffic flow predictions," Energy, Elsevier, vol. 304(C).
    3. Kolarova, Viktoriya & Steck, Felix & Bahamonde-Birke, Francisco J., 2019. "Assessing the effect of autonomous driving on value of travel time savings: A comparison between current and future preferences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 155-169.
    4. Qian, Lixian & Yin, Juelin & Huang, Youlin & Liang, Ya, 2023. "The role of values and ethics in influencing consumers’ intention to use autonomous vehicle hailing services," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    5. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    6. Xu Kuang & Fuquan Zhao & Han Hao & Zongwei Liu, 2019. "Assessing the Socioeconomic Impacts of Intelligent Connected Vehicles in China: A Cost–Benefit Analysis," Sustainability, MDPI, vol. 11(12), pages 1-28, June.
    7. Dubey, Subodh & Sharma, Ishant & Mishra, Sabyasachee & Cats, Oded & Bansal, Prateek, 2022. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 63-95.
    8. Dulebenets, Maxim A. & Ozguven, Eren Erman & Moses, Ren, 2018. "The Highway Beautification Act: Towards improving efficiency of the Federal Outdoor Advertising Control Program," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 88-106.
    9. Jia Guo & Yusak Susilo & Constantinos Antoniou & Anna Pernestål Brenden, 2020. "Influence of Individual Perceptions on the Decision to Adopt Automated Bus Services," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    10. Yuche Chen & Ruixiao Sun & Xuanke Wu, 2021. "Estimating Bounds of Aerodynamic, Mass, and Auxiliary Load Impacts on Autonomous Vehicles: A Powertrain Simulation Approach," Sustainability, MDPI, vol. 13(22), pages 1-13, November.
    11. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    12. Perrine, Kenneth A. & Kockelman, Kara M. & Huang, Yantao, 2020. "Anticipating long-distance travel shifts due to self-driving vehicles," Journal of Transport Geography, Elsevier, vol. 82(C).
    13. Raphael Hoerler & Fabian Haerri & Merja Hoppe, 2019. "New Solutions in Sustainable Commuting—The Attitudes and Experience of European Stakeholders and Experts in Switzerland," Social Sciences, MDPI, vol. 8(7), pages 1-19, July.
    14. Shelly Etzioni & Jamil Hamadneh & Arnór B. Elvarsson & Domokos Esztergár-Kiss & Milena Djukanovic & Stelios N. Neophytou & Jaka Sodnik & Amalia Polydoropoulou & Ioannis Tsouros & Cristina Pronello & N, 2020. "Modeling Cross-National Differences in Automated Vehicle Acceptance," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    15. Johannes Morfeldt & Daniel J. A. Johansson, 2022. "Impacts of shared mobility on vehicle lifetimes and on the carbon footprint of electric vehicles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Emberger, Guenter & Pfaffenbichler, Paul, 2020. "A quantitative analysis of potential impacts of automated vehicles in Austria using a dynamic integrated land use and transport interaction model," Transport Policy, Elsevier, vol. 98(C), pages 57-67.
    17. Zia Wadud & Muhammad Adeel & Jillian Anable, 2024. "Understanding the large role of long-distance travel in carbon emissions from passenger travel," Nature Energy, Nature, vol. 9(9), pages 1129-1138, September.
    18. Bray, Garrett & Cebon, David, 2022. "Operational speed strategy opportunities for autonomous trucking on highways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 75-94.
    19. Wu, Wei & Zhang, Fangni & Liu, Wei & Lodewijks, Gabriel, 2020. "Modelling the traffic in a mixed network with autonomous-driving expressways and non-autonomous local streets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    20. Pi, Dawei & Xue, Pengyu & Wang, Weihua & Xie, Boyuan & Wang, Hongliang & Wang, Xianhui & Yin, Guodong, 2023. "Automotive platoon energy-saving: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:134:y:2020:i:c:p:65-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.