IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v120y2019icp58-70.html
   My bibliography  Save this article

Implications of traffic signal cybersecurity on potential deliberate traffic disruptions

Author

Listed:
  • Perrine, Kenneth A.
  • Levin, Michael W.
  • Yahia, Cesar N.
  • Duell, Melissa
  • Boyles, Stephen D.

Abstract

Traffic control systems, including signal controllers, sensors, and centralized coordination software, all have the capacity to be vulnerable to malicious attacks. Although several studies on outages, attacks, and cybersecurity have been conducted in the literature, the effects of district-wide attacks on signals have not been specifically studied in-depth. There is a need for risk assessments to be conducted to establish resilient policies within traffic operations agencies. A key factor in assessing risk is in gaining an idea of the hypothetical impact of an outage. In this preliminary study, a dynamic traffic assignment network is used to model a central business district, where traffic signal-controlled intersections are cyberattacked and selectively disabled (effectively replaced with four-way stops). In one scenario, total delay is multiplied 4.3 times when 26 signals are chosen and disabled according to maximum, decreasing intersection traffic volume. In scenarios where the attacker prioritizes the selection of signals by maximizing the number of travelers affected, 7 signals are needed to exert the same impact.

Suggested Citation

  • Perrine, Kenneth A. & Levin, Michael W. & Yahia, Cesar N. & Duell, Melissa & Boyles, Stephen D., 2019. "Implications of traffic signal cybersecurity on potential deliberate traffic disruptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 58-70.
  • Handle: RePEc:eee:transa:v:120:y:2019:i:c:p:58-70
    DOI: 10.1016/j.tra.2018.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415302846
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2018.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    2. Tampère, Chris M.J. & Corthout, Ruben & Cattrysse, Dirk & Immers, Lambertus H., 2011. "A generic class of first order node models for dynamic macroscopic simulation of traffic flows," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 289-309, January.
    3. Bell, Michael G. H. & Cassir, Chris, 2002. "Risk-averse user equilibrium traffic assignment: an application of game theory," Transportation Research Part B: Methodological, Elsevier, vol. 36(8), pages 671-681, September.
    4. Sullivan, J.L. & Novak, D.C. & Aultman-Hall, L. & Scott, D.M., 2010. "Identifying critical road segments and measuring system-wide robustness in transportation networks with isolating links: A link-based capacity-reduction approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 323-336, June.
    5. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perez, Yuri & Pereira, Fabio Henrique, 2021. "Simulation of traffic light disruptions in street networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    2. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    3. Flötteröd, Gunnar & Rohde, Jannis, 2011. "Operational macroscopic modeling of complex urban road intersections," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 903-922, July.
    4. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    5. Ge, Qian & Fukuda, Daisuke, 2019. "A macroscopic dynamic network loading model for multiple-reservoir system," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 502-527.
    6. Storm, Pieter Jacob & Mandjes, Michel & van Arem, Bart, 2022. "Efficient evaluation of stochastic traffic flow models using Gaussian process approximation," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 126-144.
    7. Zhang, Pinchao & Qian, Sean, 2020. "Path-based system optimal dynamic traffic assignment: A subgradient approach," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 41-63.
    8. Wright, Matthew A. & Gomes, Gabriel & Horowitz, Roberto & Kurzhanskiy, Alex A., 2017. "On node models for high-dimensional road networks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 212-234.
    9. N. Nezamuddin & Stephen Boyles, 2015. "A Continuous DUE Algorithm Using the Link Transmission Model," Networks and Spatial Economics, Springer, vol. 15(3), pages 465-483, September.
    10. Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2019. "Continuous-time general link transmission model with simplified fanning, Part I: Theory and link model formulation," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 442-470.
    11. Satsukawa, Koki & Wada, Kentaro & Watling, David, 2022. "Dynamic system optimal traffic assignment with atomic users: Convergence and stability," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 188-209.
    12. Osorio, Carolina & Flötteröd, Gunnar & Bierlaire, Michel, 2011. "Dynamic network loading: A stochastic differentiable model that derives link state distributions," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1410-1423.
    13. Levin, Michael W. & Boyles, Stephen D. & Patel, Rahul, 2016. "Paradoxes of reservation-based intersection controls in traffic networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 90(C), pages 14-25.
    14. Himpe, Willem & Corthout, Ruben & Tampère, M.J. Chris, 2016. "An efficient iterative link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 170-190.
    15. Li, Pengfei & Mirchandani, Pitu & Zhou, Xuesong, 2015. "Solving simultaneous route guidance and traffic signal optimization problem using space-phase-time hypernetwork," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 103-130.
    16. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2019. "Continuous-time general link transmission model with simplified fanning, Part II: Event-based algorithm for networks," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 471-501.
    17. Qixiu Cheng & Zhiyuan Liu & Feifei Liu & Ruo Jia, 2017. "Urban dynamic congestion pricing: an overview and emerging research needs," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 3-18, August.
    18. Gentile, Guido & Meschini, Lorenzo & Papola, Natale, 2007. "Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1114-1138, December.
    19. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    20. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:120:y:2019:i:c:p:58-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.