IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v109y2018icp65-75.html
   My bibliography  Save this article

Prediction of U.S. General Aviation fatalities from extreme value approach

Author

Listed:
  • Diamoutene, Abdoulaye
  • Kamsu-Foguem, Bernard
  • Noureddine, Farid
  • Barro, Diakarya

Abstract

General Aviation is the main component of the United States civil aviation and the most aviation accidents concern this aviation category. Between early 2015 and May 17, 2016, a total of 1546 general aviation accidents in the United States has left 466 fatalities and 384 injured. Hence, in this study, we investigate the risk of U.S. General Aviation accidents by examining historical U.S. General Aviation accidents. Using the Peak Over Threshold approach and Generalized Pareto Distribution, we predict the number of fatalities resulting in extreme GA accidents in the future operations. We use a graphical method and intensive parameters estimates to obtain the optimal range of the threshold. In order to assess the uncertainty in the inference and the accuracy of the results, we use the nonparametric bootstrap approach.

Suggested Citation

  • Diamoutene, Abdoulaye & Kamsu-Foguem, Bernard & Noureddine, Farid & Barro, Diakarya, 2018. "Prediction of U.S. General Aviation fatalities from extreme value approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 65-75.
  • Handle: RePEc:eee:transa:v:109:y:2018:i:c:p:65-75
    DOI: 10.1016/j.tra.2018.01.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856417312260
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2018.01.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Romeijnders, Ward & Teunter, Ruud & van Jaarsveld, Willem, 2012. "A two-step method for forecasting spare parts demand using information on component repairs," European Journal of Operational Research, Elsevier, vol. 220(2), pages 386-393.
    2. del Castillo, Joan & Daoudi, Jalila, 2009. "Estimation of the generalized Pareto distribution," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 684-688, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdoulaye Diamoutene & Farid Noureddine & Rachid Noureddine & Bernard Kamsu-Foguem & Diakarya Barro, 2020. "Proportional hazard model for cutting tool recovery in machining," Journal of Risk and Reliability, , vol. 234(2), pages 322-332, April.
    2. Calabrese, Curtis G. & Molesworth, Brett R.C. & Hatfield, Julie & Slavich, Eve, 2022. "Effects of the Federal Aviation Administration's Compliance Program on aircraft incidents and accidents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 304-319.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castillo, Joan del & Serra, Isabel, 2015. "Likelihood inference for generalized Pareto distribution," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 116-128.
    2. Van der Auweraer, Sarah & Boute, Robert N. & Syntetos, Aris A., 2019. "Forecasting spare part demand with installed base information: A review," International Journal of Forecasting, Elsevier, vol. 35(1), pages 181-196.
    3. Marek Arendarczyk & Tomasz J. Kozubowski & Anna K. Panorska, 2022. "The Greenwood statistic, stochastic dominance, clustering and heavy tails," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 331-352, March.
    4. Hu, Qiwei & Chakhar, Salem & Siraj, Sajid & Labib, Ashraf, 2017. "Spare parts classification in industrial manufacturing using the dominance-based rough set approach," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1136-1163.
    5. Arthur Charpentier & Emmanuel Flachaire, 2022. "Pareto models for top incomes and wealth," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 1-25, March.
    6. van Jaarsveld, Willem & Dollevoet, Twan & Dekker, Rommert, 2015. "Improving spare parts inventory control at a repair shop," Omega, Elsevier, vol. 57(PB), pages 217-229.
    7. Van der Auweraer, Sarah & Boute, Robert, 2019. "Forecasting spare part demand using service maintenance information," International Journal of Production Economics, Elsevier, vol. 213(C), pages 138-149.
    8. Zhu, Sha & Jaarsveld, Willem van & Dekker, Rommert, 2020. "Spare parts inventory control based on maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    9. Joan Del Castillo & Jalila Daoudi & Richard Lockhart, 2014. "Methods to Distinguish Between Polynomial and Exponential Tails," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 382-393, June.
    10. Zhu, Sha & Dekker, Rommert & van Jaarsveld, Willem & Renjie, Rex Wang & Koning, Alex J., 2017. "An improved method for forecasting spare parts demand using extreme value theory," European Journal of Operational Research, Elsevier, vol. 261(1), pages 169-181.
    11. Belkhir, Mohamed & Saad, Mohsen & Samet, Anis, 2020. "Stock extreme illiquidity and the cost of capital," Journal of Banking & Finance, Elsevier, vol. 112(C).
    12. Liu, Weimiao & Deng, Tianhu & Li, Jianbin, 2019. "Product packing and stacking under uncertainty: A robust approach," European Journal of Operational Research, Elsevier, vol. 277(3), pages 903-917.
    13. Arthur Charpentier & Emmanuel Flachaire, 2019. "Pareto Models for Top Incomes," Working Papers hal-02145024, HAL.
    14. Yongquan, Sun & Xi, Chen & He, Ren & Yingchao, Jin & Quanwu, Liu, 2016. "Ordering decision-making methods on spare parts for a new aircraft fleet based on a two-sample prediction," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 40-50.
    15. Bai, Qingguo & Xu, Jianteng & Gong, Yeming & Chauhan, Satyaveer S., 2022. "Robust decisions for regulated sustainable manufacturing with partial demand information: Mandatory emission capacity versus emission tax," European Journal of Operational Research, Elsevier, vol. 298(3), pages 874-893.
    16. van Wingerden, E. & Basten, R.J.I. & Dekker, R. & Rustenburg, W.D., 2014. "More grip on inventory control through improved forecasting: A comparative study at three companies," International Journal of Production Economics, Elsevier, vol. 157(C), pages 220-237.
    17. Cramer, Erhard & Schmiedt, Anja Bettina, 2011. "Progressively Type-II censored competing risks data from Lomax distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1285-1303, March.
    18. Kim, T.Y. & Dekker, R. & Heij, C., 2016. "Spare part demand forecasting for consumer goods using installed base information," Econometric Institute Research Papers EI2016-11, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Che-Yu Hung & Chien-Chih Wang & Shi-Woei Lin & Bernard C. Jiang, 2022. "An Empirical Comparison of the Sales Forecasting Performance for Plastic Tray Manufacturing Using Missing Data," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    20. Sharma, Pankaj & Kulkarni, Makarand S & Yadav, Vikas, 2017. "A simulation based optimization approach for spare parts forecasting and selective maintenance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 274-289.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:109:y:2018:i:c:p:65-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.