IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v105y2017icp154-166.html
   My bibliography  Save this article

An optimization approach for the placement of bicycle-sharing stations to reduce short car trips: An application to the city of Seoul

Author

Listed:
  • Park, Chung
  • Sohn, So Young

Abstract

Substantial motor vehicle exhaust, a primary cause of air pollution, is emitted on short car trips of three miles or less. Bicycles have been considered an optimum means of completing these short trips because the bicycle is an environmentally friendly, economical, and convenient vehicle. Accordingly, many countries have adopted public bicycle-sharing systems to reduce the use of private vehicles for short trips in central downtown areas. In this paper, we propose a new framework, based on taxi trajectory data, for locating bicycle-sharing stations most efficiently to replace short automobile trips. The proposed framework is applied to Gangnam-gu, a district within the city of Seoul, Korea. Results using two different location-allocation models are demonstrated. As expected, when the p-median model was implemented, the selected stations were more scattered over the whole district, whereas when the MCLP model was implemented, the stations were more concentrated on central areas. Our approach is applicable to any city considering a bicycle-sharing system and can contribute to the system’s efficiency in improving environmental conditions in a central downtown area.

Suggested Citation

  • Park, Chung & Sohn, So Young, 2017. "An optimization approach for the placement of bicycle-sharing stations to reduce short car trips: An application to the city of Seoul," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 154-166.
  • Handle: RePEc:eee:transa:v:105:y:2017:i:c:p:154-166
    DOI: 10.1016/j.tra.2017.08.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416311843
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2017.08.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Braun, Lindsay M. & Rodriguez, Daniel A. & Cole-Hunter, Tom & Ambros, Albert & Donaire-Gonzalez, David & Jerrett, Michael & Mendez, Michelle A. & Nieuwenhuijsen, Mark J. & de Nazelle, Audrey, 2016. "Short-term planning and policy interventions to promote cycling in urban centers: Findings from a commute mode choice analysis in Barcelona, Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 164-183.
    2. Lin, Jenn-Rong & Yang, Ta-Hui, 2011. "Strategic design of public bicycle sharing systems with service level constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 284-294, March.
    3. Nankervis, Max, 1999. "The effect of weather and climate on bicycle commuting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(6), pages 417-431, August.
    4. Jia Shu & Mabel C. Chou & Qizhang Liu & Chung-Piaw Teo & I-Lin Wang, 2013. "Models for Effective Deployment and Redistribution of Bicycles Within Public Bicycle-Sharing Systems," Operations Research, INFORMS, vol. 61(6), pages 1346-1359, December.
    5. Frade, Ines & Ribeiro, Anabela, 2015. "Bike-sharing stations: A maximal covering location approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 216-227.
    6. Erdoğan, Güneş & Battarra, Maria & Wolfler Calvo, Roberto, 2015. "An exact algorithm for the static rebalancing problem arising in bicycle sharing systems," European Journal of Operational Research, Elsevier, vol. 245(3), pages 667-679.
    7. Cai, Hua & Zhan, Xiaowei & Zhu, Ji & Jia, Xiaoping & Chiu, Anthony S.F. & Xu, Ming, 2016. "Understanding taxi travel patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 590-597.
    8. Won Kyung Lee & So Young Sohn, 2017. "Taxi vacancy duration: a regression analysis," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(7), pages 771-795, October.
    9. O’Brien, Oliver & Cheshire, James & Batty, Michael, 2014. "Mining bicycle sharing data for generating insights into sustainable transport systems," Journal of Transport Geography, Elsevier, vol. 34(C), pages 262-273.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Chenyi & Zhu, Ning & Ma, Shoufeng & Liu, Ronghui, 2022. "A two-stage robust approach to integrated station location and rebalancing vehicle service design in bike-sharing systems," European Journal of Operational Research, Elsevier, vol. 298(3), pages 915-938.
    2. Zhang, Yongping & Lin, Diao & Liu, Xiaoyue Cathy, 2019. "Biking islands in cities: An analysis combining bike trajectory and percolation theory," Journal of Transport Geography, Elsevier, vol. 80(C).
    3. Xinwei Ma & Ruiming Cao & Jianbiao Wang, 2019. "Effects of Psychological Factors on Modal Shift from Car to Dockless Bike Sharing: A Case Study of Nanjing, China," IJERPH, MDPI, vol. 16(18), pages 1-16, September.
    4. Yi Yao & Yifang Zhang & Lixin Tian & Nianxing Zhou & Zhilin Li & Minggang Wang, 2019. "Analysis of Network Structure of Urban Bike-Sharing System: A Case Study Based on Real-Time Data of a Public Bicycle System," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    5. Murray, Alan T., 2021. "Contemporary optimization application through geographic information systems," Omega, Elsevier, vol. 99(C).
    6. Wu, Chunliang & Kim, Inhi, 2020. "Analyzing the structural properties of bike-sharing networks: Evidence from the United States, Canada, and China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 52-71.
    7. Wei Zhou & Haixia Wang & Victor Shi & Xiding Chen, 2022. "A Decision Model for Free-Floating Car-Sharing Providers for Sustainable and Resilient Supply Chains," Sustainability, MDPI, vol. 14(13), pages 1-18, July.
    8. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    9. Hu, Yujie & Zhang, Yongping & Lamb, David & Zhang, Mingming & Jia, Peng, 2019. "Examining and optimizing the BCycle bike-sharing system – A pilot study in Colorado, US," Applied Energy, Elsevier, vol. 247(C), pages 1-12.
    10. Park, Chung & Lee, Jungpyo & Sohn, So Young, 2019. "Recommendation of feeder bus routes using neural network embedding-based optimization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 329-341.
    11. Hyoung Jun Kim & Bo Kyeong Lee & So Young Sohn, 2020. "Comparing spatial patterns of sole proprietorship and corporate payday lenders in Seoul, Korea," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 64(1), pages 215-236, February.
    12. Yang, Lin & Zhang, Fayong & Kwan, Mei-Po & Wang, Ke & Zuo, Zejun & Xia, Shaotian & Zhang, Zhiyong & Zhao, Xinpei, 2020. "Space-time demand cube for spatial-temporal coverage optimization model of shared bicycle system: A study using big bike GPS data," Journal of Transport Geography, Elsevier, vol. 88(C).
    13. Song, Jiatong & Li, Baicheng & Szeto, W.Y. & Zhan, Xingbin, 2024. "A station location design problem in a bike-sharing system with both conventional and electric shared bikes considering bike users’ roaming delay costs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    14. Xing, Yingying & Wang, Ke & Lu, Jian John, 2020. "Exploring travel patterns and trip purposes of dockless bike-sharing by analyzing massive bike-sharing data in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 87(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Albert Neumann-Saavedra & Teodor Gabriel Crainic & Bernard Gendron & Dirk Christian Mattfeld & Michael Römer, 2020. "Integrating Resource Management in Service Network Design for Bike-Sharing Systems," Transportation Science, INFORMS, vol. 54(5), pages 1251-1271, September.
    2. Wu, Weitiao & Li, Yu, 2024. "Pareto truck fleet sizing for bike relocation with stochastic demand: Risk-averse multi-stage approximate stochastic programming," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    3. Chen, Qingxin & Ma, Shoufeng & Li, Hongming & Zhu, Ning & He, Qiao-Chu, 2024. "Optimizing bike rebalancing strategies in free-floating bike-sharing systems: An enhanced distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    4. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    5. Neumann-Saavedra, Bruno Albert & Mattfeld, Dirk Christian & Hewitt, Mike, 2021. "Assessing the operational impact of tactical planning models for bike-sharing redistribution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 216-235.
    6. Kaspi, Mor & Raviv, Tal & Tzur, Michal & Galili, Hila, 2016. "Regulating vehicle sharing systems through parking reservation policies: Analysis and performance bounds," European Journal of Operational Research, Elsevier, vol. 251(3), pages 969-987.
    7. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    8. Lv, Chang & Zhang, Chaoyong & Lian, Kunlei & Ren, Yaping & Meng, Leilei, 2020. "A hybrid algorithm for the static bike-sharing re-positioning problem based on an effective clustering strategy," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 1-21.
    9. Çelebi, Dilay & Yörüsün, Aslı & Işık, Hanife, 2018. "Bicycle sharing system design with capacity allocations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 86-98.
    10. Legros, Benjamin, 2019. "Dynamic repositioning strategy in a bike-sharing system; how to prioritize and how to rebalance a bike station," European Journal of Operational Research, Elsevier, vol. 272(2), pages 740-753.
    11. Gilbert Laporte & Frédéric Meunier & Roberto Wolfler Calvo, 2018. "Shared mobility systems: an updated survey," Annals of Operations Research, Springer, vol. 271(1), pages 105-126, December.
    12. Wang, Jenhung & Tsai, Ching-Hui & Lin, Pei-Chun, 2016. "Applying spatial-temporal analysis and retail location theory to public bikes site selection in Taipei," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 45-61.
    13. Fu, Chenyi & Zhu, Ning & Ma, Shoufeng & Liu, Ronghui, 2022. "A two-stage robust approach to integrated station location and rebalancing vehicle service design in bike-sharing systems," European Journal of Operational Research, Elsevier, vol. 298(3), pages 915-938.
    14. Zhou, Yaoming & Lin, Zeyu & Guan, Rui & Sheu, Jiuh-Biing, 2023. "Dynamic battery swapping and rebalancing strategies for e-bike sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    15. Zhiwei Chen & Yucong Hu & Jutint Li & Xing Wu, 2020. "Optimal Deployment of Electric Bicycle Sharing Stations: Model Formulation and Solution Technique," Networks and Spatial Economics, Springer, vol. 20(1), pages 99-136, March.
    16. Forma, Iris A. & Raviv, Tal & Tzur, Michal, 2015. "A 3-step math heuristic for the static repositioning problem in bike-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 230-247.
    17. Hyungkyoo Kim, 2020. "Seasonal Impacts of Particulate Matter Levels on Bike Sharing in Seoul, South Korea," IJERPH, MDPI, vol. 17(11), pages 1-17, June.
    18. Mohammed Elhenawy & Hesham A. Rakha & Youssef Bichiou & Mahmoud Masoud & Sebastien Glaser & Jack Pinnow & Ahmed Stohy, 2021. "A Feasible Solution for Rebalancing Large-Scale Bike Sharing Systems," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    19. Mete Suleyman & Cil Zeynel Abidin & Özceylan Eren, 2018. "Location and Coverage Analysis of Bike- Sharing Stations in University Campus," Business Systems Research, Sciendo, vol. 9(2), pages 80-95, July.
    20. Corcoran, Jonathan & Li, Tiebei & Rohde, David & Charles-Edwards, Elin & Mateo-Babiano, Derlie, 2014. "Spatio-temporal patterns of a Public Bicycle Sharing Program: the effect of weather and calendar events," Journal of Transport Geography, Elsevier, vol. 41(C), pages 292-305.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:105:y:2017:i:c:p:154-166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.