IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v95y2014icp1-12.html
   My bibliography  Save this article

Demography-adjusted tests of neutrality based on genome-wide SNP data

Author

Listed:
  • Rafajlović, M.
  • Klassmann, A.
  • Eriksson, A.
  • Wiehe, T.
  • Mehlig, B.

Abstract

Tests of the neutral evolution hypothesis are usually built on the standard null model which assumes that mutations are neutral and the population size remains constant over time. However, it is unclear how such tests are affected if the last assumption is dropped. Here, we extend the unifying framework for tests based on the site frequency spectrum, introduced by Achaz and Ferretti, to populations of varying size. Key ingredients are the first two moments of the site frequency spectrum. We show how these moments can be computed analytically if a population has experienced two instantaneous size changes in the past. We apply our method to data from ten human populations gathered in the 1000 genomes project, estimate their demographies and define demography-adjusted versions of Tajima’s D, Fay & Wu’s H, and Zeng’s E. Our results show that demography-adjusted test statistics facilitate the direct comparison between populations and that most of the differences among populations seen in the original unadjusted tests can be explained by their underlying demographies. Upon carrying out whole-genome screens for deviations from neutrality, we identify candidate regions of recent positive selection. We provide track files with values of the adjusted and unadjusted tests for upload to the UCSC genome browser.

Suggested Citation

  • Rafajlović, M. & Klassmann, A. & Eriksson, A. & Wiehe, T. & Mehlig, B., 2014. "Demography-adjusted tests of neutrality based on genome-wide SNP data," Theoretical Population Biology, Elsevier, vol. 95(C), pages 1-12.
  • Handle: RePEc:eee:thpobi:v:95:y:2014:i:c:p:1-12
    DOI: 10.1016/j.tpb.2014.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580914000367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2014.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joshua M Akey & Michael A Eberle & Mark J Rieder & Christopher S Carlson & Mark D Shriver & Deborah A Nickerson & Leonid Kruglyak, 2004. "Population History and Natural Selection Shape Patterns of Genetic Variation in 132 Genes," PLOS Biology, Public Library of Science, vol. 2(10), pages 1-1, September.
    2. Myers, Simon & Fefferman, Charles & Patterson, Nick, 2008. "Can one learn history from the allelic spectrum?," Theoretical Population Biology, Elsevier, vol. 73(3), pages 342-348.
    3. Pardis C. Sabeti & David E. Reich & John M. Higgins & Haninah Z. P. Levine & Daniel J. Richter & Stephen F. Schaffner & Stacey B. Gabriel & Jill V. Platko & Nick J. Patterson & Gavin J. McDonald & Han, 2002. "Detecting recent positive selection in the human genome from haplotype structure," Nature, Nature, vol. 419(6909), pages 832-837, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yichen Zheng & Thomas Wiehe, 2019. "Adaptation in structured populations and fuzzy boundaries between hard and soft sweeps," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-32, November.
    2. Klassmann, A. & Ferretti, L., 2018. "The third moments of the site frequency spectrum," Theoretical Population Biology, Elsevier, vol. 120(C), pages 16-28.
    3. Ferretti, Luca & Klassmann, Alexander & Raineri, Emanuele & Ramos-Onsins, Sebastián E. & Wiehe, Thomas & Achaz, Guillaume, 2018. "The neutral frequency spectrum of linked sites," Theoretical Population Biology, Elsevier, vol. 123(C), pages 70-79.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baharian, Soheil & Gravel, Simon, 2018. "On the decidability of population size histories from finite allele frequency spectra," Theoretical Population Biology, Elsevier, vol. 120(C), pages 42-51.
    2. Mikula, Lynette Caitlin & Vogl, Claus, 2024. "The expected sample allele frequencies from populations of changing size via orthogonal polynomials," Theoretical Population Biology, Elsevier, vol. 157(C), pages 55-85.
    3. Champagnat, Nicolas & Lambert, Amaury, 2013. "Splitting trees with neutral Poissonian mutations II: Largest and oldest families," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1368-1414.
    4. Pei-Kuan Cong & Wei-Yang Bai & Jin-Chen Li & Meng-Yuan Yang & Saber Khederzadeh & Si-Rui Gai & Nan Li & Yu-Heng Liu & Shi-Hui Yu & Wei-Wei Zhao & Jun-Quan Liu & Yi Sun & Xiao-Wei Zhu & Pian-Pian Zhao , 2022. "Genomic analyses of 10,376 individuals in the Westlake BioBank for Chinese (WBBC) pilot project," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Steinrücken, Matthias & Paul, Joshua S. & Song, Yun S., 2013. "A sequentially Markov conditional sampling distribution for structured populations with migration and recombination," Theoretical Population Biology, Elsevier, vol. 87(C), pages 51-61.
    6. Magnus Nordborg & Tina T Hu & Yoko Ishino & Jinal Jhaveri & Christopher Toomajian & Honggang Zheng & Erica Bakker & Peter Calabrese & Jean Gladstone & Rana Goyal & Mattias Jakobsson & Sung Kim & Yuri , 2005. "The Pattern of Polymorphism in Arabidopsis thaliana," PLOS Biology, Public Library of Science, vol. 3(7), pages 1-1, May.
    7. Devansh Pandey & Mariana Harris & Nandita R. Garud & Vagheesh M. Narasimhan, 2024. "Leveraging ancient DNA to uncover signals of natural selection in Europe lost due to admixture or drift," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Legried, Brandon & Terhorst, Jonathan, 2022. "Rates of convergence in the two-island and isolation-with-migration models," Theoretical Population Biology, Elsevier, vol. 147(C), pages 16-27.
    9. Chen, Hua & Hey, Jody & Slatkin, Montgomery, 2015. "A hidden Markov model for investigating recent positive selection through haplotype structure," Theoretical Population Biology, Elsevier, vol. 99(C), pages 18-30.
    10. Bing Guo & Victor Borda & Roland Laboulaye & Michele D. Spring & Mariusz Wojnarski & Brian A. Vesely & Joana C. Silva & Norman C. Waters & Timothy D. O’Connor & Shannon Takala-Harrison, 2024. "Strong positive selection biases identity-by-descent-based inferences of recent demography and population structure in Plasmodium falciparum," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Yupeng Sang & Zhiqin Long & Xuming Dan & Jiajun Feng & Tingting Shi & Changfu Jia & Xinxin Zhang & Qiang Lai & Guanglei Yang & Hongying Zhang & Xiaoting Xu & Huanhuan Liu & Yuanzhong Jiang & Pär K. In, 2022. "Genomic insights into local adaptation and future climate-induced vulnerability of a keystone forest tree in East Asia," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Živković, Daniel & Stephan, Wolfgang, 2011. "Analytical results on the neutral non-equilibrium allele frequency spectrum based on diffusion theory," Theoretical Population Biology, Elsevier, vol. 79(4), pages 184-191.
    13. Ryosuke Kimura & Akihiro Fujimoto & Katsushi Tokunaga & Jun Ohashi, 2007. "A Practical Genome Scan for Population-Specific Strong Selective Sweeps That Have Reached Fixation," PLOS ONE, Public Library of Science, vol. 2(3), pages 1-10, March.
    14. Xinkai Tong & Dong Chen & Jianchao Hu & Shiyao Lin & Ziqi Ling & Huashui Ai & Zhiyan Zhang & Lusheng Huang, 2023. "Accurate haplotype construction and detection of selection signatures enabled by high quality pig genome sequences," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Terence C. Burnham & Aimee Dunlap & David W. Stephens, 2015. "Experimental Evolution and Economics," SAGE Open, , vol. 5(4), pages 21582440156, November.
    16. Pleuni S Pennings & Joachim Hermisson, 2006. "Soft Sweeps III: The Signature of Positive Selection from Recurrent Mutation," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-15, December.
    17. Johndrow, James E. & Palacios, Julia A., 2019. "Exact limits of inference in coalescent models," Theoretical Population Biology, Elsevier, vol. 125(C), pages 75-93.
    18. Kim, Junhyong & Mossel, Elchanan & Rácz, Miklós Z. & Ross, Nathan, 2015. "Can one hear the shape of a population history?," Theoretical Population Biology, Elsevier, vol. 100(C), pages 26-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:95:y:2014:i:c:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.