IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v441y2006i7097d10.1038_nature04789.html
   My bibliography  Save this article

Genetic evidence for complex speciation of humans and chimpanzees

Author

Listed:
  • Nick Patterson

    (Broad Institute of Harvard and Massachusetts Institute of Technology)

  • Daniel J. Richter

    (Broad Institute of Harvard and Massachusetts Institute of Technology)

  • Sante Gnerre

    (Broad Institute of Harvard and Massachusetts Institute of Technology)

  • Eric S. Lander

    (Broad Institute of Harvard and Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • David Reich

    (Broad Institute of Harvard and Massachusetts Institute of Technology
    Harvard Medical School)

Abstract

The genetic divergence time between two species varies substantially across the genome, conveying important information about the timing and process of speciation. Here we develop a framework for studying this variation and apply it to about 20 million base pairs of aligned sequence from humans, chimpanzees, gorillas and more distantly related primates. Human–chimpanzee genetic divergence varies from less than 84% to more than 147% of the average, a range of more than 4 million years. Our analysis also shows that human–chimpanzee speciation occurred less than 6.3 million years ago and probably more recently, conflicting with some interpretations of ancient fossils. Most strikingly, chromosome X shows an extremely young genetic divergence time, close to the genome minimum along nearly its entire length. These unexpected features would be explained if the human and chimpanzee lineages initially diverged, then later exchanged genes before separating permanently.

Suggested Citation

  • Nick Patterson & Daniel J. Richter & Sante Gnerre & Eric S. Lander & David Reich, 2006. "Genetic evidence for complex speciation of humans and chimpanzees," Nature, Nature, vol. 441(7097), pages 1103-1108, June.
  • Handle: RePEc:nat:nature:v:441:y:2006:i:7097:d:10.1038_nature04789
    DOI: 10.1038/nature04789
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature04789
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature04789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. DeGiorgio, Michael & Rosenberg, Noah A., 2016. "Consistency and inconsistency of consensus methods for inferring species trees from gene trees in the presence of ancestral population structure," Theoretical Population Biology, Elsevier, vol. 110(C), pages 12-24.
    2. Barton, N.H. & Etheridge, A.M. & Kelleher, J. & Véber, A., 2013. "Inference in two dimensions: Allele frequencies versus lengths of shared sequence blocks," Theoretical Population Biology, Elsevier, vol. 87(C), pages 105-119.
    3. Thomas Mailund & Julien Y Dutheil & Asger Hobolth & Gerton Lunter & Mikkel H Schierup, 2011. "Estimating Divergence Time and Ancestral Effective Population Size of Bornean and Sumatran Orangutan Subspecies Using a Coalescent Hidden Markov Model," PLOS Genetics, Public Library of Science, vol. 7(3), pages 1-15, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:441:y:2006:i:7097:d:10.1038_nature04789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.