IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v83y2013icp55-63.html
   My bibliography  Save this article

A simple greedy algorithm for reconstructing pedigrees

Author

Listed:
  • Cowell, Robert G.

Abstract

This paper introduces a simple greedy algorithm for searching for high likelihood pedigrees using micro-satellite (STR) genotype information on a complete sample of related individuals. The core idea behind the algorithm is not new, but it is believed that putting it into a greedy search setting, and specifically the application to pedigree learning, is novel. The algorithm does not require age or sex information, but this information can be incorporated if desired. The algorithm is applied to human and non-human genetic data and in a simulation study.

Suggested Citation

  • Cowell, Robert G., 2013. "A simple greedy algorithm for reconstructing pedigrees," Theoretical Population Biology, Elsevier, vol. 83(C), pages 55-63.
  • Handle: RePEc:eee:thpobi:v:83:y:2013:i:c:p:55-63
    DOI: 10.1016/j.tpb.2012.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580912001189
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2012.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katta G. Murty, 1968. "Letter to the Editor—An Algorithm for Ranking all the Assignments in Order of Increasing Cost," Operations Research, INFORMS, vol. 16(3), pages 682-687, June.
    2. Cowell, Robert G., 2009. "Efficient maximum likelihood pedigree reconstruction," Theoretical Population Biology, Elsevier, vol. 76(4), pages 285-291.
    3. Eugene L. Lawler, 1972. "A Procedure for Computing the K Best Solutions to Discrete Optimization Problems and Its Application to the Shortest Path Problem," Management Science, INFORMS, vol. 18(7), pages 401-405, March.
    4. Almudevar, Anthony & LaCombe, Jason, 2012. "On the choice of prior density for the Bayesian analysis of pedigree structure," Theoretical Population Biology, Elsevier, vol. 81(2), pages 131-143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheehan, Nuala A. & Bartlett, Mark & Cussens, James, 2014. "Improved maximum likelihood reconstruction of complex multi-generational pedigrees," Theoretical Population Biology, Elsevier, vol. 97(C), pages 11-19.
    2. Sun, M. & Jobling, M.A. & Taliun, D. & Pramstaller, P.P. & Egeland, T. & Sheehan, N.A., 2016. "On the use of dense SNP marker data for the identification of distant relative pairs," Theoretical Population Biology, Elsevier, vol. 107(C), pages 14-25.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Almudevar, Anthony, 2016. "An information theoretic approach to pedigree reconstruction," Theoretical Population Biology, Elsevier, vol. 107(C), pages 52-64.
    2. Anderson, Eric C. & Ng, Thomas C., 2016. "Bayesian pedigree inference with small numbers of single nucleotide polymorphisms via a factor-graph representation," Theoretical Population Biology, Elsevier, vol. 107(C), pages 39-51.
    3. Gustavo Angulo & Shabbir Ahmed & Santanu S. Dey & Volker Kaibel, 2015. "Forbidden Vertices," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 350-360, February.
    4. B. I. Goldengorin & D. S. Malyshev & P. M. Pardalos & V. A. Zamaraev, 2015. "A tolerance-based heuristic approach for the weighted independent set problem," Journal of Combinatorial Optimization, Springer, vol. 29(2), pages 433-450, February.
    5. Chen, Chao, 2003. "Freeway Performance Measurement System (PeMS)," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6j93p90t, Institute of Transportation Studies, UC Berkeley.
    6. Francesca Guerriero & Roberto Musmanno & Valerio Lacagnina & Antonio Pecorella, 2001. "A Class of Label-Correcting Methods for the K Shortest Paths Problem," Operations Research, INFORMS, vol. 49(3), pages 423-429, June.
    7. Sun, M. & Jobling, M.A. & Taliun, D. & Pramstaller, P.P. & Egeland, T. & Sheehan, N.A., 2016. "On the use of dense SNP marker data for the identification of distant relative pairs," Theoretical Population Biology, Elsevier, vol. 107(C), pages 14-25.
    8. Christian Roed Pedersen & Lars Relund Nielsen & Kim Allan Andersen, 2008. "The Bicriterion Multimodal Assignment Problem: Introduction, Analysis, and Experimental Results," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 400-411, August.
    9. Guazzelli, Cauê Sauter & Cunha, Claudio B., 2018. "Exploring K-best solutions to enrich network design decision-making," Omega, Elsevier, vol. 78(C), pages 139-164.
    10. Sheehan, Nuala A. & Bartlett, Mark & Cussens, James, 2014. "Improved maximum likelihood reconstruction of complex multi-generational pedigrees," Theoretical Population Biology, Elsevier, vol. 97(C), pages 11-19.
    11. Buu-Chau Truong & Kim-Hung Pho & Van-Buol Nguyen & Bui Anh Tuan & Wing-Keung Wong, 2019. "Graph Theory And Environmental Algorithmic Solutions To Assign Vehicles Application To Garbage Collection In Vietnam," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(3), pages 1-35, September.
    12. Sébastien Giguère & François Laviolette & Mario Marchand & Denise Tremblay & Sylvain Moineau & Xinxia Liang & Éric Biron & Jacques Corbeil, 2015. "Machine Learning Assisted Design of Highly Active Peptides for Drug Discovery," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-21, April.
    13. Elena Fernández & Justo Puerto & Antonio Rodríguez-Chía, 2013. "On discrete optimization with ordering," Annals of Operations Research, Springer, vol. 207(1), pages 83-96, August.
    14. Z Fu & R Eglese & L Y O Li, 2005. "A new tabu search heuristic for the open vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(3), pages 267-274, March.
    15. Jamal Ouenniche & Prasanna K. Ramaswamy & Michel Gendreau, 2017. "A dual local search framework for combinatorial optimization problems with TSP application," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1377-1398, November.
    16. Ehrgott, Matthias & Skriver, Anders J. V., 2003. "Solving biobjective combinatorial max-ordering problems by ranking methods and a two-phases approach," European Journal of Operational Research, Elsevier, vol. 147(3), pages 657-664, June.
    17. Pascoal, Marta M.B. & Sedeño-Noda, Antonio, 2012. "Enumerating K best paths in length order in DAGs," European Journal of Operational Research, Elsevier, vol. 221(2), pages 308-316.
    18. Antonio Sedeño-Noda, 2016. "Ranking One Million Simple Paths in Road Networks," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-20, October.
    19. Volgenant, A., 2002. "Solving some lexicographic multi-objective combinatorial problems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 578-584, June.
    20. Carvalho, Margarida & Lodi, Andrea, 2023. "A theoretical and computational equilibria analysis of a multi-player kidney exchange program," European Journal of Operational Research, Elsevier, vol. 305(1), pages 373-385.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:83:y:2013:i:c:p:55-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.