IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v107y2016icp14-25.html
   My bibliography  Save this article

On the use of dense SNP marker data for the identification of distant relative pairs

Author

Listed:
  • Sun, M.
  • Jobling, M.A.
  • Taliun, D.
  • Pramstaller, P.P.
  • Egeland, T.
  • Sheehan, N.A.

Abstract

There has been recent interest in the exploitation of readily available dense genome scan marker data for the identification of relatives. However, there are conflicting findings on how informative these data are in practical situations and, in particular, sets of thinned markers are often used with no concrete justification for the chosen spacing. We explore the potential usefulness of dense single nucleotide polymorphism (SNP) arrays for this application with a focus on inferring distant relative pairs. We distinguish between relationship estimation, as defined by a pedigree connecting the two individuals of interest, and estimation of general relatedness as would be provided by a kinship coefficient or a coefficient of relatedness. Since our primary interest is in the former case, we adopt a pedigree likelihood approach. We consider the effect of additional SNPs and data on an additional typed relative, together with choice of that relative, on relationship inference. We also consider the effect of linkage disequilibrium. When overall relatedness, rather than the specific relationship, would suffice, we propose an approximate approach that is easy to implement and appears to compete well with a popular moment-based estimator and a recent maximum likelihood approach based on chromosomal sharing. We conclude that denser marker data are more informative for distant relatives. However, linkage disequilibrium cannot be ignored and will be the main limiting factor for applications to real data.

Suggested Citation

  • Sun, M. & Jobling, M.A. & Taliun, D. & Pramstaller, P.P. & Egeland, T. & Sheehan, N.A., 2016. "On the use of dense SNP marker data for the identification of distant relative pairs," Theoretical Population Biology, Elsevier, vol. 107(C), pages 14-25.
  • Handle: RePEc:eee:thpobi:v:107:y:2016:i:c:p:14-25
    DOI: 10.1016/j.tpb.2015.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580915001033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2015.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cowell, Robert G., 2013. "A simple greedy algorithm for reconstructing pedigrees," Theoretical Population Biology, Elsevier, vol. 83(C), pages 55-63.
    2. Sheehan, Nuala A. & Bartlett, Mark & Cussens, James, 2014. "Improved maximum likelihood reconstruction of complex multi-generational pedigrees," Theoretical Population Biology, Elsevier, vol. 97(C), pages 11-19.
    3. Cowell, Robert G., 2009. "Efficient maximum likelihood pedigree reconstruction," Theoretical Population Biology, Elsevier, vol. 76(4), pages 285-291.
    4. Glazner Chris & Thompson Elizabeth Alison, 2012. "Improving Pedigree-based Linkage Analysis by Estimating Coancestry Among Families," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheehan, Nuala A. & Bartlett, Mark & Cussens, James, 2014. "Improved maximum likelihood reconstruction of complex multi-generational pedigrees," Theoretical Population Biology, Elsevier, vol. 97(C), pages 11-19.
    2. Almudevar, Anthony, 2016. "An information theoretic approach to pedigree reconstruction," Theoretical Population Biology, Elsevier, vol. 107(C), pages 52-64.
    3. Anderson, Eric C. & Ng, Thomas C., 2016. "Bayesian pedigree inference with small numbers of single nucleotide polymorphisms via a factor-graph representation," Theoretical Population Biology, Elsevier, vol. 107(C), pages 39-51.
    4. Cowell, Robert G., 2013. "A simple greedy algorithm for reconstructing pedigrees," Theoretical Population Biology, Elsevier, vol. 83(C), pages 55-63.
    5. Almudevar, Anthony & LaCombe, Jason, 2012. "On the choice of prior density for the Bayesian analysis of pedigree structure," Theoretical Population Biology, Elsevier, vol. 81(2), pages 131-143.
    6. Riester, Markus & Stadler, Peter F. & Klemm, Konstantin, 2010. "Reconstruction of pedigrees in clonal plant populations," Theoretical Population Biology, Elsevier, vol. 78(2), pages 109-117.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:107:y:2016:i:c:p:14-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.