IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v107y2016icp52-64.html
   My bibliography  Save this article

An information theoretic approach to pedigree reconstruction

Author

Listed:
  • Almudevar, Anthony

Abstract

Network structure is a dominant feature of many biological systems, both at the cellular level and within natural populations. Advances in genotype and gene expression screening made over the last few decades have permitted the reconstruction of these networks. However, resolution to a single model estimate will generally not be possible, leaving open the question of the appropriate method of formal statistical inference. The nonstandard structure of the problem precludes most traditional statistical methodologies. Alternatively, a Bayesian approach provides a natural methodology for formal inference. Construction of a posterior density on the space of network structures allows formal inference regarding features of network structure using specific marginal posterior distributions.

Suggested Citation

  • Almudevar, Anthony, 2016. "An information theoretic approach to pedigree reconstruction," Theoretical Population Biology, Elsevier, vol. 107(C), pages 52-64.
  • Handle: RePEc:eee:thpobi:v:107:y:2016:i:c:p:52-64
    DOI: 10.1016/j.tpb.2015.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004058091500101X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2015.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthieu Vignes & Jimmy Vandel & David Allouche & Nidal Ramadan-Alban & Christine Cierco-Ayrolles & Thomas Schiex & Brigitte Mangin & Simon de Givry, 2011. "Gene Regulatory Network Reconstruction Using Bayesian Networks, the Dantzig Selector, the Lasso and Their Meta-Analysis," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-15, December.
    2. Cowell, Robert G., 2009. "Efficient maximum likelihood pedigree reconstruction," Theoretical Population Biology, Elsevier, vol. 76(4), pages 285-291.
    3. Ellis, Byron & Wong, Wing Hung, 2008. "Learning Causal Bayesian Network Structures From Experimental Data," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 778-789, June.
    4. Scutari, Marco, 2010. "Learning Bayesian Networks with the bnlearn R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i03).
    5. Almudevar, Anthony & LaCombe, Jason, 2012. "On the choice of prior density for the Bayesian analysis of pedigree structure," Theoretical Population Biology, Elsevier, vol. 81(2), pages 131-143.
    6. Sheehan, Nuala A. & Bartlett, Mark & Cussens, James, 2014. "Improved maximum likelihood reconstruction of complex multi-generational pedigrees," Theoretical Population Biology, Elsevier, vol. 97(C), pages 11-19.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anderson, Eric C. & Ng, Thomas C., 2016. "Bayesian pedigree inference with small numbers of single nucleotide polymorphisms via a factor-graph representation," Theoretical Population Biology, Elsevier, vol. 107(C), pages 39-51.
    2. Sun, M. & Jobling, M.A. & Taliun, D. & Pramstaller, P.P. & Egeland, T. & Sheehan, N.A., 2016. "On the use of dense SNP marker data for the identification of distant relative pairs," Theoretical Population Biology, Elsevier, vol. 107(C), pages 14-25.
    3. Cowell, Robert G., 2013. "A simple greedy algorithm for reconstructing pedigrees," Theoretical Population Biology, Elsevier, vol. 83(C), pages 55-63.
    4. Almudevar, Anthony & LaCombe, Jason, 2012. "On the choice of prior density for the Bayesian analysis of pedigree structure," Theoretical Population Biology, Elsevier, vol. 81(2), pages 131-143.
    5. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    6. Roland R. Ramsahai, 2020. "Connecting actuarial judgment to probabilistic learning techniques with graph theory," Papers 2007.15475, arXiv.org.
    7. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    8. Myriam Patricia Cifuentes & Clara Mercedes Suarez & Ricardo Cifuentes & Noel Malod-Dognin & Sam Windels & Jose Fernando Valderrama & Paul D. Juarez & R. Burciaga Valdez & Cynthia Colen & Charles Phill, 2022. "Big Data to Knowledge Analytics Reveals the Zika Virus Epidemic as Only One of Multiple Factors Contributing to a Year-Over-Year 28-Fold Increase in Microcephaly Incidence," IJERPH, MDPI, vol. 19(15), pages 1-21, July.
    9. Silvia de Juan & Maria Dulce Subida & Andres Ospina-Alvarez & Ainara Aguilar & Miriam Fernandez, 2020. "Disentangling the socio-ecological drivers behind illegal fishing in a small-scale fishery managed by a TURF system," Papers 2012.08970, arXiv.org.
    10. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    11. Michail Tsagris, 2021. "A New Scalable Bayesian Network Learning Algorithm with Applications to Economics," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 341-367, January.
    12. Federica Cugnata & Silvia Salini & Elena Siletti, 2021. "Deepening Well-Being Evaluation with Different Data Sources: A Bayesian Networks Approach," IJERPH, MDPI, vol. 18(15), pages 1-10, July.
    13. Lingfei Wang, 2021. "Single-cell normalization and association testing unifying CRISPR screen and gene co-expression analyses with Normalisr," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    14. Robert Stojnic & Audrey Qiuyan Fu & Boris Adryan, 2012. "A Graphical Modelling Approach to the Dissection of Highly Correlated Transcription Factor Binding Site Profiles," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-13, November.
    15. Lidia Ceriani & Chiara Gigliarano, 2020. "Multidimensional Well-Being: A Bayesian Networks Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(1), pages 237-263, November.
    16. Martin Huber, 2024. "An introduction to causal discovery," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 160(1), pages 1-16, December.
    17. Cornwell, Nikki & Bilson, Christopher & Gepp, Adrian & Stern, Steven & Vanstone, Bruce J., 2023. "Modernising operational risk management in financial institutions via data-driven causal factors analysis: A pre-registered study," Pacific-Basin Finance Journal, Elsevier, vol. 79(C).
    18. Michail Tsagris, 2022. "The FEDHC Bayesian Network Learning Algorithm," Mathematics, MDPI, vol. 10(15), pages 1-28, July.
    19. María Morales & Antonio Salmerón & Ana D. Maldonado & Andrés R. Masegosa & Rafael Rumí, 2022. "An Empirical Analysis of the Impact of Continuous Assessment on the Final Exam Mark," Mathematics, MDPI, vol. 10(21), pages 1-21, October.
    20. Nikolaos M. R. Lykoskoufis & Evarist Planet & Halit Ongen & Didier Trono & Emmanouil T. Dermitzakis, 2024. "Transposable elements mediate genetic effects altering the expression of nearby genes in colorectal cancer," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:107:y:2016:i:c:p:52-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.