Mutating away from your enemies: The evolution of mutation rate in a host–parasite system
Author
Abstract
Suggested Citation
DOI: 10.1016/j.tpb.2009.03.003
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Csaba Pal & María D. Maciá & Antonio Oliver & Ira Schachar & Angus Buckling, 2007. "Coevolution with viruses drives the evolution of bacterial mutation rates," Nature, Nature, vol. 450(7172), pages 1079-1081, December.
- Paul D. Sniegowski & Philip J. Gerrish & Richard E. Lenski, 1997. "Evolution of high mutation rates in experimental populations of E. coli," Nature, Nature, vol. 387(6634), pages 703-705, June.
- Eli A. Stahl & Greg Dwyer & Rodney Mauricio & Martin Kreitman & Joy Bergelson, 1999. "Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis," Nature, Nature, vol. 400(6745), pages 667-671, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liberman, Uri & Behar, Hilla & Feldman, Marcus W., 2016. "Evolution of reduced mutation under frequency-dependent selection," Theoretical Population Biology, Elsevier, vol. 112(C), pages 52-59.
- Blanquart, François, 2014. "The demography of a metapopulation in an environment changing in time and space," Theoretical Population Biology, Elsevier, vol. 94(C), pages 1-9.
- Greenspoon, Philip B. & Mideo, Nicole, 2017. "Evolutionary rescue of a parasite population by mutation rate evolution," Theoretical Population Biology, Elsevier, vol. 117(C), pages 64-75.
- Shen, Hao & Liberman, Uri & Feldman, Marcus W., 2020. "Evolution of transmission modifiers under frequency-dependent selection and transmission in constant or fluctuating environments," Theoretical Population Biology, Elsevier, vol. 135(C), pages 56-63.
- MacPherson, Ailene & Keeling, Matthew J. & Otto, Sarah P., 2021. "Coevolution fails to maintain genetic variation in a host–parasite model with constant finite population size," Theoretical Population Biology, Elsevier, vol. 137(C), pages 10-21.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Greenspoon, Philip B. & Mideo, Nicole, 2017. "Evolutionary rescue of a parasite population by mutation rate evolution," Theoretical Population Biology, Elsevier, vol. 117(C), pages 64-75.
- Antun Skanata & Edo Kussell, 2021. "Ecological memory preserves phage resistance mechanisms in bacteria," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
- Liberman, Uri & Behar, Hilla & Feldman, Marcus W., 2016. "Evolution of reduced mutation under frequency-dependent selection," Theoretical Population Biology, Elsevier, vol. 112(C), pages 52-59.
- Michael Habig & Cecile Lorrain & Alice Feurtey & Jovan Komluski & Eva H. Stukenbrock, 2021. "Epigenetic modifications affect the rate of spontaneous mutations in a pathogenic fungus," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
- Nicholas Leiby & Christopher J Marx, 2014. "Metabolic Erosion Primarily Through Mutation Accumulation, and Not Tradeoffs, Drives Limited Evolution of Substrate Specificity in Escherichia coli," PLOS Biology, Public Library of Science, vol. 12(2), pages 1-10, February.
- Rachel L. Moran & Emilie J. Richards & Claudia Patricia Ornelas-García & Joshua B. Gross & Alexandra Donny & Jonathan Wiese & Alex C. Keene & Johanna E. Kowalko & Nicolas Rohner & Suzanne E. McGaugh, 2023. "Selection-driven trait loss in independently evolved cavefish populations," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
- Richard E. Lenski & Terence C. Burnham, 2018. "Experimental evolution of bacteria across 60,000 generations, and what it might mean for economics and human decision-making," Journal of Bioeconomics, Springer, vol. 20(1), pages 107-124, April.
- Qiming Zhang & Zhilin Xia & Yi-Bing Cheng & Min Gu, 2018. "High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
- Joao A. Ascensao & Kelly M. Wetmore & Benjamin H. Good & Adam P. Arkin & Oskar Hallatschek, 2023. "Quantifying the local adaptive landscape of a nascent bacterial community," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
- Joo Hyun Im & Brian P Lazzaro, 2018. "Population genetic analysis of autophagy and phagocytosis genes in Drosophila melanogaster and D. simulans," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-17, October.
- Baumdicker, Franz & Sester-Huss, Elisabeth & Pfaffelhuber, Peter, 2020. "Modifiers of mutation rate in selectively fluctuating environments," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6843-6862.
- Jeremy W Fox & Richard E Lenski, 2015. "From Here to Eternity—The Theory and Practice of a Really Long Experiment," PLOS Biology, Public Library of Science, vol. 13(6), pages 1-9, June.
- Lewis Stevens & Isaac Martínez-Ugalde & Erna King & Martin Wagah & Dominic Absolon & Rowan Bancroft & Pablo Gonzalez de la Rosa & Jessica L. Hall & Manuela Kieninger & Agnieszka Kloch & Sarah Pelan & , 2023. "Ancient diversity in host-parasite interaction genes in a model parasitic nematode," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
- Wen Wei & Wei-Chin Ho & Megan G. Behringer & Samuel F. Miller & George Bcharah & Michael Lynch, 2022. "Rapid evolution of mutation rate and spectrum in response to environmental and population-genetic challenges," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
More about this item
Keywords
Host; Parasite; Co-evolution; Mutation rate; Modifier;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:75:y:2009:i:4:p:301-311. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.