IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/1002185.html
   My bibliography  Save this article

From Here to Eternity—The Theory and Practice of a Really Long Experiment

Author

Listed:
  • Jeremy W Fox
  • Richard E Lenski

Abstract

In February 1988, Richard Lenski set up 12 replicate populations of a single genotype of Escherichia coli in a simple nutrient medium. He has been following their evolution ever since. Here, Lenski answers provocative questions from Jeremy Fox about his iconic "Long-Term Evolution Experiment" (LTEE). The LTEE is a remarkable case study of the interplay of determinism and chance in evolution—and in the conduct of science.Richard Lenski has been running his long-term evolution experiment for over 27 years. In this interview, ecologist Jeremy Fox asks him how and why he does it.

Suggested Citation

  • Jeremy W Fox & Richard E Lenski, 2015. "From Here to Eternity—The Theory and Practice of a Really Long Experiment," PLOS Biology, Public Library of Science, vol. 13(6), pages 1-9, June.
  • Handle: RePEc:plo:pbio00:1002185
    DOI: 10.1371/journal.pbio.1002185
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002185
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.1002185&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.1002185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul D. Sniegowski & Philip J. Gerrish & Richard E. Lenski, 1997. "Evolution of high mutation rates in experimental populations of E. coli," Nature, Nature, vol. 387(6634), pages 703-705, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard E. Lenski & Terence C. Burnham, 2018. "Experimental evolution of bacteria across 60,000 generations, and what it might mean for economics and human decision-making," Journal of Bioeconomics, Springer, vol. 20(1), pages 107-124, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Habig & Cecile Lorrain & Alice Feurtey & Jovan Komluski & Eva H. Stukenbrock, 2021. "Epigenetic modifications affect the rate of spontaneous mutations in a pathogenic fungus," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. M’Gonigle, L.K. & Shen, J.J. & Otto, S.P., 2009. "Mutating away from your enemies: The evolution of mutation rate in a host–parasite system," Theoretical Population Biology, Elsevier, vol. 75(4), pages 301-311.
    3. Nicholas Leiby & Christopher J Marx, 2014. "Metabolic Erosion Primarily Through Mutation Accumulation, and Not Tradeoffs, Drives Limited Evolution of Substrate Specificity in Escherichia coli," PLOS Biology, Public Library of Science, vol. 12(2), pages 1-10, February.
    4. Greenspoon, Philip B. & Mideo, Nicole, 2017. "Evolutionary rescue of a parasite population by mutation rate evolution," Theoretical Population Biology, Elsevier, vol. 117(C), pages 64-75.
    5. Rachel L. Moran & Emilie J. Richards & Claudia Patricia Ornelas-García & Joshua B. Gross & Alexandra Donny & Jonathan Wiese & Alex C. Keene & Johanna E. Kowalko & Nicolas Rohner & Suzanne E. McGaugh, 2023. "Selection-driven trait loss in independently evolved cavefish populations," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Richard E. Lenski & Terence C. Burnham, 2018. "Experimental evolution of bacteria across 60,000 generations, and what it might mean for economics and human decision-making," Journal of Bioeconomics, Springer, vol. 20(1), pages 107-124, April.
    7. Qiming Zhang & Zhilin Xia & Yi-Bing Cheng & Min Gu, 2018. "High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    8. Joao A. Ascensao & Kelly M. Wetmore & Benjamin H. Good & Adam P. Arkin & Oskar Hallatschek, 2023. "Quantifying the local adaptive landscape of a nascent bacterial community," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    9. Wen Wei & Wei-Chin Ho & Megan G. Behringer & Samuel F. Miller & George Bcharah & Michael Lynch, 2022. "Rapid evolution of mutation rate and spectrum in response to environmental and population-genetic challenges," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:1002185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.