IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v158y2024icp89-108.html
   My bibliography  Save this article

Neutral diversity in experimental metapopulations

Author

Listed:
  • Doulcier, Guilhem
  • Lambert, Amaury

Abstract

New automated and high-throughput methods allow the manipulation and selection of numerous bacterial populations. In this manuscript we are interested in the neutral diversity patterns that emerge from such a setup in which many bacterial populations are grown in parallel serial transfers, in some cases with population-wide extinction and splitting events. We model bacterial growth by a birth–death process and use the theory of coalescent point processes. We show that there is a dilution factor that optimises the expected amount of neutral diversity for a given number of cycles, and study the power law behaviour of the mutation frequency spectrum for different experimental regimes. We also explore how neutral variation diverges between two recently split populations by establishing a new formula for the expected number of shared and private mutations. Finally, we show the interest of such a setup to select a phenotype of interest that requires multiple mutations.

Suggested Citation

  • Doulcier, Guilhem & Lambert, Amaury, 2024. "Neutral diversity in experimental metapopulations," Theoretical Population Biology, Elsevier, vol. 158(C), pages 89-108.
  • Handle: RePEc:eee:thpobi:v:158:y:2024:i:c:p:89-108
    DOI: 10.1016/j.tpb.2024.02.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580924000200
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2024.02.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xianglai Li & Zhao Zhou & Wenna Li & Yajun Yan & Xiaolin Shen & Jia Wang & Xinxiao Sun & Qipeng Yuan, 2022. "Design of stable and self-regulated microbial consortia for chemical synthesis," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Li Xie & Wenying Shou, 2021. "Steering ecological-evolutionary dynamics to improve artificial selection of microbial communities," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    3. Rees Kassen & Angus Buckling & Graham Bell & Paul B. Rainey, 2000. "Diversity peaks at intermediate productivity in a laboratory microcosm," Nature, Nature, vol. 406(6795), pages 508-512, August.
    4. Katrin Hammerschmidt & Caroline J. Rose & Benjamin Kerr & Paul B. Rainey, 2014. "Life cycles, fitness decoupling and the evolution of multicellularity," Nature, Nature, vol. 515(7525), pages 75-79, November.
    5. Jed A. Fuhrman, 2009. "Microbial community structure and its functional implications," Nature, Nature, vol. 459(7244), pages 193-199, May.
    6. Paul D. Sniegowski & Philip J. Gerrish & Richard E. Lenski, 1997. "Evolution of high mutation rates in experimental populations of E. coli," Nature, Nature, vol. 387(6634), pages 703-705, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zihan Wang & Akshit Goyal & Veronika Dubinkina & Ashish B. George & Tong Wang & Yulia Fridman & Sergei Maslov, 2021. "Complementary resource preferences spontaneously emerge in diauxic microbial communities," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Stojkoski, Viktor & Karbevski, Marko & Utkovski, Zoran & Basnarkov, Lasko & Kocarev, Ljupco, 2021. "Evolution of cooperation in networked heterogeneous fluctuating environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    3. M’Gonigle, L.K. & Shen, J.J. & Otto, S.P., 2009. "Mutating away from your enemies: The evolution of mutation rate in a host–parasite system," Theoretical Population Biology, Elsevier, vol. 75(4), pages 301-311.
    4. Leon Dlugosch & Anja Poehlein & Bernd Wemheuer & Birgit Pfeiffer & Thomas H. Badewien & Rolf Daniel & Meinhard Simon, 2022. "Significance of gene variants for the functional biogeography of the near-surface Atlantic Ocean microbiome," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Greenspoon, Philip B. & Mideo, Nicole, 2017. "Evolutionary rescue of a parasite population by mutation rate evolution," Theoretical Population Biology, Elsevier, vol. 117(C), pages 64-75.
    6. Qiming Zhang & Zhilin Xia & Yi-Bing Cheng & Min Gu, 2018. "High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    7. Joao A. Ascensao & Kelly M. Wetmore & Benjamin H. Good & Adam P. Arkin & Oskar Hallatschek, 2023. "Quantifying the local adaptive landscape of a nascent bacterial community," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Zhiqiang Wan & Jiuyan Yang & Rui Gu & Yan Liang & Yulong Yan & Qingzhu Gao & Jie Yang, 2016. "Influence of Different Mowing Systems on Community Characteristics and the Compensatory Growth of Important Species of the Stipa grandis Steppe in Inner Mongolia," Sustainability, MDPI, vol. 8(11), pages 1-11, November.
    9. Yuanxiao Gao & Arne Traulsen & Yuriy Pichugin, 2019. "Interacting cells driving the evolution of multicellular life cycles," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-16, May.
    10. Jeremy W Fox & Richard E Lenski, 2015. "From Here to Eternity—The Theory and Practice of a Really Long Experiment," PLOS Biology, Public Library of Science, vol. 13(6), pages 1-9, June.
    11. Michael Habig & Cecile Lorrain & Alice Feurtey & Jovan Komluski & Eva H. Stukenbrock, 2021. "Epigenetic modifications affect the rate of spontaneous mutations in a pathogenic fungus," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    12. Lei Zhang & Yu Cheng & Guang Gao & Jiahu Jiang, 2019. "Spatial-Temporal Variation of Bacterial Communities in Sediments in Lake Chaohu, a Large, Shallow Eutrophic Lake in China," IJERPH, MDPI, vol. 16(20), pages 1-18, October.
    13. Nicholas Leiby & Christopher J Marx, 2014. "Metabolic Erosion Primarily Through Mutation Accumulation, and Not Tradeoffs, Drives Limited Evolution of Substrate Specificity in Escherichia coli," PLOS Biology, Public Library of Science, vol. 12(2), pages 1-10, February.
    14. Rachel L. Moran & Emilie J. Richards & Claudia Patricia Ornelas-García & Joshua B. Gross & Alexandra Donny & Jonathan Wiese & Alex C. Keene & Johanna E. Kowalko & Nicolas Rohner & Suzanne E. McGaugh, 2023. "Selection-driven trait loss in independently evolved cavefish populations," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    15. Zihan Yue & Kun Yuan & Mayuko Seki & Shin-Ichiro Agake & Keisuke Matsumura & Naohisa Okita & Wako Naoi & Katsuhiko Naoi & Koki Toyota & Haruo Tanaka & Soh Sugihara & Michiko Yasuda & Naoko Ohkama-Ohts, 2024. "Comparative Analysis of Japanese Soils: Exploring Power Generation Capability in Relation to Bacterial Communities," Sustainability, MDPI, vol. 16(11), pages 1-16, May.
    16. Richard E. Lenski & Terence C. Burnham, 2018. "Experimental evolution of bacteria across 60,000 generations, and what it might mean for economics and human decision-making," Journal of Bioeconomics, Springer, vol. 20(1), pages 107-124, April.
    17. Yangyi Zhou & Jiangping Wang, 2023. "The Composition and Assembly of Soil Microbial Communities Differ across Vegetation Cover Types of Urban Green Spaces," Sustainability, MDPI, vol. 15(17), pages 1-15, August.
    18. Elise Vaumourin & Patrick Gasqui & Jean-Philippe Buffet & Jean-Louis Chapuis & Benoît Pisanu & Elisabeth Ferquel & Muriel Vayssier-Taussat & Gwenaël Vourc’h, 2013. "A Probabilistic Model in Cross-Sectional Studies for Identifying Interactions between Two Persistent Vector-Borne Pathogens in Reservoir Populations," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-9, June.
    19. de Souza Júnior, Misael B. & Ferreira, Fernando F. & de Oliveira, Viviane M., 2014. "Effects of the spatial heterogeneity on the diversity of ecosystems with resource competition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 312-319.
    20. Mengzhi Ji & Jiayin Zhou & Yan Li & Kai Ma & Wen Song & Yueyue Li & Jizhong Zhou & Qichao Tu, 2024. "Biodiversity of mudflat intertidal viromes along the Chinese coasts," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:158:y:2024:i:c:p:89-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.