IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v73y2008i3p332-341.html
   My bibliography  Save this article

Viral diversity limits immune diversity in asymptomatic phase of HIV infection

Author

Listed:
  • Iwami, Shingo
  • Nakaoka, Shinji
  • Takeuchi, Yasuhiro

Abstract

We propose a new diversity threshold theory which states that the specific CTLs to the viral strain become inactivated (that is, some HIV strain can escape from its specific immune response) when the diversity of HIV strains exceeds some threshold number. We call this number “immune diversity threshold†. Our theory can explain the inactivation of specific immune response and a limit of maximum immune diversity. We can conclude that the accumulation of viral diversity eventually leads to AIDS.

Suggested Citation

  • Iwami, Shingo & Nakaoka, Shinji & Takeuchi, Yasuhiro, 2008. "Viral diversity limits immune diversity in asymptomatic phase of HIV infection," Theoretical Population Biology, Elsevier, vol. 73(3), pages 332-341.
  • Handle: RePEc:eee:thpobi:v:73:y:2008:i:3:p:332-341
    DOI: 10.1016/j.tpb.2008.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004058090800018X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2008.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew J. McMichael & Sarah L. Rowland-Jones, 2001. "Cellular immune responses to HIV," Nature, Nature, vol. 410(6831), pages 980-987, April.
    2. Daniel L. Barber & E. John Wherry & David Masopust & Baogong Zhu & James P. Allison & Arlene H. Sharpe & Gordon J. Freeman & Rafi Ahmed, 2006. "Restoring function in exhausted CD8 T cells during chronic viral infection," Nature, Nature, vol. 439(7077), pages 682-687, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Ting & Wang, Wendi & Liu, Xianning, 2011. "Mathematical analysis of an HIV model with impulsive antiretroviral drug doses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 653-665.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moujtaba Y. Kasmani & Paytsar Topchyan & Ashley K. Brown & Ryan J. Brown & Xiaopeng Wu & Yao Chen & Achia Khatun & Donia Alson & Yue Wu & Robert Burns & Chien-Wei Lin & Matthew R. Kudek & Jie Sun & We, 2023. "A spatial sequencing atlas of age-induced changes in the lung during influenza infection," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Nadia Anikeeva & Maria Steblyanko & Leticia Kuri-Cervantes & Marcus Buggert & Michael R. Betts & Yuri Sykulev, 2022. "The immune synapses reveal aberrant functions of CD8 T cells during chronic HIV infection," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Emily N. Neubert & Julia M. DeRogatis & Sloan A. Lewis & Karla M. Viramontes & Pedro Ortega & Monique L. Henriquez & Rémi Buisson & Ilhem Messaoudi & Roberto Tinoco, 2023. "HMGB2 regulates the differentiation and stemness of exhausted CD8+ T cells during chronic viral infection and cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Wenji Piao & Lushen Li & Vikas Saxena & Jegan Iyyathurai & Ram Lakhan & Yigang Zhang & Isadora Tadeval Lape & Christina Paluskievicz & Keli L. Hippen & Young Lee & Emma Silverman & Marina W. Shirkey &, 2022. "PD-L1 signaling selectively regulates T cell lymphatic transendothelial migration," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Stefanie Hiltbrunner & Lena Cords & Sabrina Kasser & Sandra N. Freiberger & Susanne Kreutzer & Nora C. Toussaint & Linda Grob & Isabelle Opitz & Michael Messerli & Martin Zoche & Alex Soltermann & Mar, 2023. "Acquired resistance to anti-PD1 therapy in patients with NSCLC associates with immunosuppressive T cell phenotype," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Solhwi Lee & Kunhee Lee & Hyeonjin Bae & Kyungmin Lee & Junghwa Lee & Junhui Ma & Ye Ji Lee & Bo Ryeong Lee & Woong-Yang Park & Se Jin Im, 2023. "Defining a TCF1-expressing progenitor allogeneic CD8+ T cell subset in acute graft-versus-host disease," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Chen Wang & Changfu Hao & Kai Dai & Yuzheng Li & Jie Jiao & Zhuoya Niu & Xiao Xu & Xuedan Deng & Jing He & Wu Yao, 2022. "Occupational Low-Dose Radiation Affects the Expression of Immune Checkpoint of Medical Radiologists," IJERPH, MDPI, vol. 19(12), pages 1-14, June.
    8. Victor Garcia & Kirsten Richter & Frederik Graw & Annette Oxenius & Roland R Regoes, 2015. "Estimating the In Vivo Killing Efficacy of Cytotoxic T Lymphocytes across Different Peptide-MHC Complex Densities," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-19, May.
    9. Jacqueline A. Turner & Malia A. Fredrickson & Marc D’Antonio & Elizabeth Katsnelson & Morgan MacBeth & Robert Gulick & Tugs-Saikhan Chimed & Martin McCarter & Angelo D’Alessandro & William A. Robinson, 2023. "Lysophosphatidic acid modulates CD8 T cell immunosurveillance and metabolism to impair anti-tumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Jonathan M Carlson & Zabrina L Brumme & Christine M Rousseau & Chanson J Brumme & Philippa Matthews & Carl Kadie & James I Mullins & Bruce D Walker & P Richard Harrigan & Philip J R Goulder & David He, 2008. "Phylogenetic Dependency Networks: Inferring Patterns of CTL Escape and Codon Covariation in HIV-1 Gag," PLOS Computational Biology, Public Library of Science, vol. 4(11), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:73:y:2008:i:3:p:332-341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.