IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i12p7105-d835298.html
   My bibliography  Save this article

Occupational Low-Dose Radiation Affects the Expression of Immune Checkpoint of Medical Radiologists

Author

Listed:
  • Chen Wang

    (Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China)

  • Changfu Hao

    (Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China)

  • Kai Dai

    (Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China)

  • Yuzheng Li

    (Henan Institute of Occupational Medicine, Zhengzhou 450001, China)

  • Jie Jiao

    (Henan Institute of Occupational Medicine, Zhengzhou 450001, China)

  • Zhuoya Niu

    (Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China)

  • Xiao Xu

    (Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China)

  • Xuedan Deng

    (Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China)

  • Jing He

    (Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China)

  • Wu Yao

    (Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China)

Abstract

The purpose of this study was to investigate the expression of immune checkpoint cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and T cell immunoglobulin and mucin domain 3 (TIM-3) in the peripheral blood T lymphocytes of medical radiologists. The study incorporated 100 male medical radiologists and 107 male healthy controls. The expressions of CTLA-4 and TIM-3 among CD4+ and CD8+ lymphocytes were detected by flow cytometry. The expression levels of CTLA-4 and TIM-3 in the CD4+T cells of radiation workers were lower than those of healthy controls ( p < 0.05). Correlation analysis showed that the CD8+CTLA-4 expression level was significantly positively correlated with individual cumulative dose ( r s = 0.260, p = 0.001, <0.05), while the expression level of CD8+TIM-3 was negatively correlated ( r s = −0.180, p = 0.027, <0.05). Low-dose radiation exposure affects the expression of CTLA-4 and TIM-3 in human peripheral blood T lymphocytes. Future studies need to focus on exploring the mechanisms by which CTLA-4 and TIM-3 expression changes in response to low-dose radiation exposure.

Suggested Citation

  • Chen Wang & Changfu Hao & Kai Dai & Yuzheng Li & Jie Jiao & Zhuoya Niu & Xiao Xu & Xuedan Deng & Jing He & Wu Yao, 2022. "Occupational Low-Dose Radiation Affects the Expression of Immune Checkpoint of Medical Radiologists," IJERPH, MDPI, vol. 19(12), pages 1-14, June.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:12:p:7105-:d:835298
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/12/7105/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/12/7105/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel L. Barber & E. John Wherry & David Masopust & Baogong Zhu & James P. Allison & Arlene H. Sharpe & Gordon J. Freeman & Rafi Ahmed, 2006. "Restoring function in exhausted CD8 T cells during chronic viral infection," Nature, Nature, vol. 439(7077), pages 682-687, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moujtaba Y. Kasmani & Paytsar Topchyan & Ashley K. Brown & Ryan J. Brown & Xiaopeng Wu & Yao Chen & Achia Khatun & Donia Alson & Yue Wu & Robert Burns & Chien-Wei Lin & Matthew R. Kudek & Jie Sun & We, 2023. "A spatial sequencing atlas of age-induced changes in the lung during influenza infection," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Emily N. Neubert & Julia M. DeRogatis & Sloan A. Lewis & Karla M. Viramontes & Pedro Ortega & Monique L. Henriquez & Rémi Buisson & Ilhem Messaoudi & Roberto Tinoco, 2023. "HMGB2 regulates the differentiation and stemness of exhausted CD8+ T cells during chronic viral infection and cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Wenji Piao & Lushen Li & Vikas Saxena & Jegan Iyyathurai & Ram Lakhan & Yigang Zhang & Isadora Tadeval Lape & Christina Paluskievicz & Keli L. Hippen & Young Lee & Emma Silverman & Marina W. Shirkey &, 2022. "PD-L1 signaling selectively regulates T cell lymphatic transendothelial migration," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Stefanie Hiltbrunner & Lena Cords & Sabrina Kasser & Sandra N. Freiberger & Susanne Kreutzer & Nora C. Toussaint & Linda Grob & Isabelle Opitz & Michael Messerli & Martin Zoche & Alex Soltermann & Mar, 2023. "Acquired resistance to anti-PD1 therapy in patients with NSCLC associates with immunosuppressive T cell phenotype," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Iwami, Shingo & Nakaoka, Shinji & Takeuchi, Yasuhiro, 2008. "Viral diversity limits immune diversity in asymptomatic phase of HIV infection," Theoretical Population Biology, Elsevier, vol. 73(3), pages 332-341.
    6. Solhwi Lee & Kunhee Lee & Hyeonjin Bae & Kyungmin Lee & Junghwa Lee & Junhui Ma & Ye Ji Lee & Bo Ryeong Lee & Woong-Yang Park & Se Jin Im, 2023. "Defining a TCF1-expressing progenitor allogeneic CD8+ T cell subset in acute graft-versus-host disease," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Victor Garcia & Kirsten Richter & Frederik Graw & Annette Oxenius & Roland R Regoes, 2015. "Estimating the In Vivo Killing Efficacy of Cytotoxic T Lymphocytes across Different Peptide-MHC Complex Densities," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-19, May.
    8. Kaitao Li & Paul Cardenas-Lizana & Jintian Lyu & Anna V. Kellner & Menglan Li & Peiwen Cong & Valencia E. Watson & Zhou Yuan & Eunseon Ahn & Larissa Doudy & Zhenhai Li & Khalid Salaita & Rafi Ahmed & , 2024. "Mechanical force regulates ligand binding and function of PD-1," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Jacqueline A. Turner & Malia A. Fredrickson & Marc D’Antonio & Elizabeth Katsnelson & Morgan MacBeth & Robert Gulick & Tugs-Saikhan Chimed & Martin McCarter & Angelo D’Alessandro & William A. Robinson, 2023. "Lysophosphatidic acid modulates CD8 T cell immunosurveillance and metabolism to impair anti-tumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:12:p:7105-:d:835298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.