Estimating the In Vivo Killing Efficacy of Cytotoxic T Lymphocytes across Different Peptide-MHC Complex Densities
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pcbi.1004178
Download full text from publisher
References listed on IDEAS
- Frederik Graw & Roland R Regoes, 2009. "Investigating CTL Mediated Killing with a 3D Cellular Automaton," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-12, August.
- Vitaly V Ganusov & Daniel L Barber & Rob J De Boer, 2011. "Killing of Targets by CD8+ T Cells in the Mouse Spleen Follows the Law of Mass Action," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-8, January.
- Daniel L. Barber & E. John Wherry & David Masopust & Baogong Zhu & James P. Allison & Arlene H. Sharpe & Gordon J. Freeman & Rafi Ahmed, 2006. "Restoring function in exhausted CD8 T cells during chronic viral infection," Nature, Nature, vol. 439(7077), pages 682-687, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Claire Christophe & Sabina Müller & Magda Rodrigues & Anne-Elisabeth Petit & Patrick Cattiaux & Loïc Dupré & Sébastien Gadat & Salvatore Valitutti, 2015. "A Biased Competition Theory of Cytotoxic T Lymphocyte Interaction with Tumor Nodules," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-23, March.
- Moujtaba Y. Kasmani & Paytsar Topchyan & Ashley K. Brown & Ryan J. Brown & Xiaopeng Wu & Yao Chen & Achia Khatun & Donia Alson & Yue Wu & Robert Burns & Chien-Wei Lin & Matthew R. Kudek & Jie Sun & We, 2023. "A spatial sequencing atlas of age-induced changes in the lung during influenza infection," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
- Emily N. Neubert & Julia M. DeRogatis & Sloan A. Lewis & Karla M. Viramontes & Pedro Ortega & Monique L. Henriquez & Rémi Buisson & Ilhem Messaoudi & Roberto Tinoco, 2023. "HMGB2 regulates the differentiation and stemness of exhausted CD8+ T cells during chronic viral infection and cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Vitaly V Ganusov & Daniel L Barber & Rob J De Boer, 2011. "Killing of Targets by CD8+ T Cells in the Mouse Spleen Follows the Law of Mass Action," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-8, January.
- Wenji Piao & Lushen Li & Vikas Saxena & Jegan Iyyathurai & Ram Lakhan & Yigang Zhang & Isadora Tadeval Lape & Christina Paluskievicz & Keli L. Hippen & Young Lee & Emma Silverman & Marina W. Shirkey &, 2022. "PD-L1 signaling selectively regulates T cell lymphatic transendothelial migration," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Stefanie Hiltbrunner & Lena Cords & Sabrina Kasser & Sandra N. Freiberger & Susanne Kreutzer & Nora C. Toussaint & Linda Grob & Isabelle Opitz & Michael Messerli & Martin Zoche & Alex Soltermann & Mar, 2023. "Acquired resistance to anti-PD1 therapy in patients with NSCLC associates with immunosuppressive T cell phenotype," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Iwami, Shingo & Nakaoka, Shinji & Takeuchi, Yasuhiro, 2008. "Viral diversity limits immune diversity in asymptomatic phase of HIV infection," Theoretical Population Biology, Elsevier, vol. 73(3), pages 332-341.
- Solhwi Lee & Kunhee Lee & Hyeonjin Bae & Kyungmin Lee & Junghwa Lee & Junhui Ma & Ye Ji Lee & Bo Ryeong Lee & Woong-Yang Park & Se Jin Im, 2023. "Defining a TCF1-expressing progenitor allogeneic CD8+ T cell subset in acute graft-versus-host disease," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Chen Wang & Changfu Hao & Kai Dai & Yuzheng Li & Jie Jiao & Zhuoya Niu & Xiao Xu & Xuedan Deng & Jing He & Wu Yao, 2022. "Occupational Low-Dose Radiation Affects the Expression of Immune Checkpoint of Medical Radiologists," IJERPH, MDPI, vol. 19(12), pages 1-14, June.
- Jacqueline A. Turner & Malia A. Fredrickson & Marc D’Antonio & Elizabeth Katsnelson & Morgan MacBeth & Robert Gulick & Tugs-Saikhan Chimed & Martin McCarter & Angelo D’Alessandro & William A. Robinson, 2023. "Lysophosphatidic acid modulates CD8 T cell immunosurveillance and metabolism to impair anti-tumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004178. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.