IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34157-0.html
   My bibliography  Save this article

The immune synapses reveal aberrant functions of CD8 T cells during chronic HIV infection

Author

Listed:
  • Nadia Anikeeva

    (Thomas Jefferson University)

  • Maria Steblyanko

    (Thomas Jefferson University)

  • Leticia Kuri-Cervantes

    (Perelman School of Medicine, University of Pennsylvania)

  • Marcus Buggert

    (Perelman School of Medicine, University of Pennsylvania
    Karolinska Institutet, Karolinska University Hospital Huddinge)

  • Michael R. Betts

    (Perelman School of Medicine, University of Pennsylvania)

  • Yuri Sykulev

    (Thomas Jefferson University
    Thomas Jefferson University)

Abstract

Chronic HIV infection causes persistent low-grade inflammation that induces premature aging of the immune system including senescence of memory and effector CD8 T cells. To uncover the reasons of gradually diminished potency of CD8 T cells from people living with HIV, here we expose the T cells to planar lipid bilayers containing ligands for T-cell receptor and a T-cell integrins and analyze the cellular morphology, dynamics of synaptic interface formation and patterns of the cellular degranulation. We find a large fraction of phenotypically naive T cells from chronically infected people are capable to form mature synapse with focused degranulation, a signature of a differentiated T cells. Further, differentiation of aberrant naive T cells may lead to the development of anomalous effector T cells undermining their capacity to control HIV and other pathogens that could be contained otherwise.

Suggested Citation

  • Nadia Anikeeva & Maria Steblyanko & Leticia Kuri-Cervantes & Marcus Buggert & Michael R. Betts & Yuri Sykulev, 2022. "The immune synapses reveal aberrant functions of CD8 T cells during chronic HIV infection," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34157-0
    DOI: 10.1038/s41467-022-34157-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34157-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34157-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew J. McMichael & Sarah L. Rowland-Jones, 2001. "Cellular immune responses to HIV," Nature, Nature, vol. 410(6831), pages 980-987, April.
    2. Julia Drylewicz & Nienke Vrisekoop & Tendai Mugwagwa & Anne Bregje de Boer & Sigrid A Otto & Mette D Hazenberg & Kiki Tesselaar & Rob J de Boer & José A M Borghans, 2016. "Reconciling Longitudinal Naive T-Cell and TREC Dynamics during HIV-1 Infection," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-12, March.
    3. Colin R. F. Monks & Benjamin A. Freiberg & Hannah Kupfer & Noah Sciaky & Abraham Kupfer, 1998. "Three-dimensional segregation of supramolecular activation clusters in T cells," Nature, Nature, vol. 395(6697), pages 82-86, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wataru Nishi & Ei Wakamatsu & Hiroaki Machiyama & Ryohei Matsushima & Kensho Saito & Yosuke Yoshida & Tetsushi Nishikawa & Tomohiro Takehara & Hiroko Toyota & Masae Furuhata & Hitoshi Nishijima & Arat, 2023. "Evaluation of therapeutic PD-1 antibodies by an advanced single-molecule imaging system detecting human PD-1 microclusters," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Kenkre, V.M. & Spendier, K., 2022. "A theory of coalescence of signaling receptor clusters in immune cells," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    3. Jonathan D. Worboys & Katherine N. Vowell & Roseanna K. Hare & Ashley R. Ambrose & Margherita Bertuzzi & Michael A. Conner & Florence P. Patel & William H. Zammit & Judit Gali-Moya & Khodor S. Hazime , 2023. "TIGIT can inhibit T cell activation via ligation-induced nanoclusters, independent of CD226 co-stimulation," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    4. Iwami, Shingo & Nakaoka, Shinji & Takeuchi, Yasuhiro, 2008. "Viral diversity limits immune diversity in asymptomatic phase of HIV infection," Theoretical Population Biology, Elsevier, vol. 73(3), pages 332-341.
    5. Kai Liu & Brian Chu & Jay Newby & Elizabeth L Read & John Lowengrub & Jun Allard, 2019. "Hydrodynamics of transient cell-cell contact: The role of membrane permeability and active protrusion length," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-21, April.
    6. Rachel Drawbond & Kathrin Spendier, 2019. "TIRF Microscope Image Sequences of Fluorescent IgE-FcεRI Receptor Complexes inside a FcεRI-Centric Synapse in RBL-2H3 Cells," Data, MDPI, vol. 4(3), pages 1-11, July.
    7. Jonathan M Carlson & Zabrina L Brumme & Christine M Rousseau & Chanson J Brumme & Philippa Matthews & Carl Kadie & James I Mullins & Bruce D Walker & P Richard Harrigan & Philip J R Goulder & David He, 2008. "Phylogenetic Dependency Networks: Inferring Patterns of CTL Escape and Codon Covariation in HIV-1 Gag," PLOS Computational Biology, Public Library of Science, vol. 4(11), pages 1-23, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34157-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.