IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.07503.html
   My bibliography  Save this paper

Affine term structure models driven by independent L\'evy processes

Author

Listed:
  • Micha{l} Barski
  • Rafa{l} {L}ochowski

Abstract

We characterize affine term structure models of non-negative short rate $R$ which may be obtained as solutions of autonomous SDEs driven by independent, one-dimensional L\'evy martingales, that is equations of the form $$ dR(r)=F(R(t))dt+\sum_{i=1}^{d}G_i(R(t-))dZ_i(t), \quad R(0)=r_0\geq 0, \quad t>0, \quad (1)$$ with deterministic real functions $F,G_1,...,G_d$ and independent one-dimensional L\'evy martingales $Z_1,...,Z_d$. Using a general result on the form of the generators of affine term structure models due to Filipovi\'c, it is shown, under the assumption that the Laplace transforms of the driving noises are regularly varying, that all possible solutions $R$ of (1) may be obtained also as solutions of autonomous SDEs driven by independent stable processes with stability indices in the range $(1,2]$. The obtained models include in particular the $\alpha$-CIR model, introduced by Jiao et al., which proved to be still simple yet more reliable than the classical CIR model. Results on heavy tails of $R$ and its limit distribution in terms of the stability indices are proven. Finally, results of numerical calibration of the obtained models to the market term structure of interest rates are presented and compared with the CIR and $\alpha$-CIR models.

Suggested Citation

  • Micha{l} Barski & Rafa{l} {L}ochowski, 2024. "Affine term structure models driven by independent L\'evy processes," Papers 2402.07503, arXiv.org.
  • Handle: RePEc:arx:papers:2402.07503
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.07503
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    2. Damir Filipovic, 2001. "A general characterization of one factor affine term structure models," Finance and Stochastics, Springer, vol. 5(3), pages 389-412.
    3. Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR Model with Branching Processes in Sovereign Interest Rate Modelling," Post-Print hal-01275397, HAL.
    4. Keller-Ressel, Martin & Mijatović, Aleksandar, 2012. "On the limit distributions of continuous-state branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2329-2345.
    5. Fu, Zongfei & Li, Zenghu, 2010. "Stochastic equations of non-negative processes with jumps," Stochastic Processes and their Applications, Elsevier, vol. 120(3), pages 306-330, March.
    6. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    7. Aurélien Alfonsi, 2015. "Affine Diffusions and Related Processes: Simulation, Theory and Applications," Post-Print hal-03127212, HAL.
    8. Martin Keller-Ressel & Thomas Steiner, 2008. "Yield curve shapes and the asymptotic short rate distribution in affine one-factor models," Finance and Stochastics, Springer, vol. 12(2), pages 149-172, April.
    9. Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR model with branching processes in sovereign interest rate modeling," Finance and Stochastics, Springer, vol. 21(3), pages 789-813, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Micha{l} Barski & Rafa{l} {L}ochowski, 2023. "Classification and calibration of affine models driven by independent L\'evy processes," Papers 2303.08477, arXiv.org.
    2. Matyas Barczy & Mohamed Ben Alaya & Ahmed Kebaier & Gyula Pap, 2016. "Asymptotic properties of maximum likelihood estimator for the growth rate for a jump-type CIR process based on continuous time observations," Papers 1609.05865, arXiv.org, revised Aug 2017.
    3. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2018. "The Alpha-Heston Stochastic Volatility Model," Papers 1812.01914, arXiv.org.
    4. Matyas Barczy & Mohamed Ben Alaya & Ahmed Kebaier & Gyula Pap, 2017. "Asymptotic properties of maximum likelihood estimator for the growth rate of a stable CIR process based on continuous time observations," Papers 1711.02140, arXiv.org, revised Feb 2019.
    5. repec:uts:finphd:41 is not listed on IDEAS
    6. M.E. Mancino & S. Scotti & G. Toscano, 2020. "Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.
    7. Claudio Fontana & Alessandro Gnoatto & Guillaume Szulda, 2022. "CBI-time-changed Lévy processes," Working Papers 05/2022, University of Verona, Department of Economics.
    8. Mesias Alfeus, 2019. "Stochastic Modelling of New Phenomena in Financial Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2019, January-A.
    9. Pingping Jiang & Bo Li & Yongjin Wang, 2020. "Exit Times, Undershoots and Overshoots for Reflected CIR Process with Two-Sided Jumps," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 693-710, June.
    10. Jianhai Bao & Jian Wang, 2023. "Coupling methods and exponential ergodicity for two‐factor affine processes," Mathematische Nachrichten, Wiley Blackwell, vol. 296(5), pages 1716-1736, May.
    11. Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR model with branching processes in sovereign interest rate modeling," Finance and Stochastics, Springer, vol. 21(3), pages 789-813, July.
    12. Fontana, Claudio & Gnoatto, Alessandro & Szulda, Guillaume, 2023. "CBI-time-changed Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 323-349.
    13. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2021. "The Alpha‐Heston stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 943-978, July.
    14. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    15. Mayerhofer, Eberhard & Stelzer, Robert & Vestweber, Johanna, 2020. "Geometric ergodicity of affine processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4141-4173.
    16. Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR Model with Branching Processes in Sovereign Interest Rate Modelling," Post-Print hal-01275397, HAL.
    17. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    18. Ying Jiao & Chunhua Ma & Simone Scotti, 2016. "Alpha-CIR Model with Branching Processes in Sovereign Interest Rate Modelling," Working Papers hal-01275397, HAL.
    19. Kensuke Kato & Nobuhiro Nakamura, 2024. "PDE-Based Bayesian Inference of CEV Dynamics for Credit Risk in Stock Prices," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(2), pages 389-421, June.
    20. Peng Cheng & Olivier Scaillet, 2002. "Linear-Quadratic Jump-Diffusion Modeling with Application to Stochastic Volatility," FAME Research Paper Series rp67, International Center for Financial Asset Management and Engineering.
    21. Frikha, Noufel & Li, Libo, 2021. "Well-posedness and approximation of some one-dimensional Lévy-driven non-linear SDEs," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 76-107.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.07503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.