IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v149y2023icp27-38.html
   My bibliography  Save this article

Distributions of cherries and pitchforks for the Ford model

Author

Listed:
  • Kaur, Gursharn
  • Choi, Kwok Pui
  • Wu, Taoyang

Abstract

Distributional properties of tree shape statistics under random phylogenetic tree models play an important role in investigating the evolutionary forces underlying the observed phylogenies. In this paper, we study two subtree counting statistics, the number of cherries and that of pitchforks for the Ford model, the alpha model introduced by Daniel Ford. It is a one-parameter family of random phylogenetic tree models which includes the proportional to distinguishable arrangement (PDA) and the Yule models, two tree models commonly used in phylogenetics. Based on a non-uniform version of the extended Pólya urn models in which negative entries are permitted for their replacement matrices, we obtain the strong law of large numbers and the central limit theorem for the joint distribution of these two statistics for the Ford model. Furthermore, we derive a recursive formula for computing the exact joint distribution of these two statistics. This leads to exact formulas for their means and higher order asymptotic expansions of their second moments, which allows us to identify a critical parameter value for the correlation between these two statistics. That is, when the number of tree leaves is sufficiently large, they are negatively correlated for 0≤α≤1/2 and positively correlated for 1/2<α<1.

Suggested Citation

  • Kaur, Gursharn & Choi, Kwok Pui & Wu, Taoyang, 2023. "Distributions of cherries and pitchforks for the Ford model," Theoretical Population Biology, Elsevier, vol. 149(C), pages 27-38.
  • Handle: RePEc:eee:thpobi:v:149:y:2023:i:c:p:27-38
    DOI: 10.1016/j.tpb.2022.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004058092200079X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2022.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arbisser, Ilana M. & Jewett, Ethan M. & Rosenberg, Noah A., 2018. "On the joint distribution of tree height and tree length under the coalescent," Theoretical Population Biology, Elsevier, vol. 122(C), pages 46-56.
    2. Choi, Kwok Pui & Thompson, Ariadne & Wu, Taoyang, 2020. "On cherry and pitchfork distributions of random rooted and unrooted phylogenetic trees," Theoretical Population Biology, Elsevier, vol. 132(C), pages 92-104.
    3. Wu, Taoyang & Choi, Kwok Pui, 2016. "On joint subtree distributions under two evolutionary models," Theoretical Population Biology, Elsevier, vol. 108(C), pages 13-23.
    4. Wirtz, Johannes & Wiehe, Thomas, 2019. "The Evolving Moran Genealogy," Theoretical Population Biology, Elsevier, vol. 130(C), pages 94-105.
    5. Janson, Svante, 2004. "Functional limit theorems for multitype branching processes and generalized Pólya urns," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 177-245, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Kwok Pui & Thompson, Ariadne & Wu, Taoyang, 2020. "On cherry and pitchfork distributions of random rooted and unrooted phylogenetic trees," Theoretical Population Biology, Elsevier, vol. 132(C), pages 92-104.
    2. Soumaya Idriss & Hosam Mahmoud, 2023. "Exact Covariances and Refined Asymptotics in Dichromatic Tenable Balanced Pólya Urn Schemes," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-16, June.
    3. Crimaldi, Irene & Dai Pra, Paolo & Louis, Pierre-Yves & Minelli, Ida G., 2019. "Synchronization and functional central limit theorems for interacting reinforced random walks," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 70-101.
    4. Berti, Patrizia & Crimaldi, Irene & Pratelli, Luca & Rigo, Pietro, 2010. "Central limit theorems for multicolor urns with dominated colors," Stochastic Processes and their Applications, Elsevier, vol. 120(8), pages 1473-1491, August.
    5. Michael D Nicholson & Tibor Antal, 2019. "Competing evolutionary paths in growing populations with applications to multidrug resistance," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-25, April.
    6. José Moler & Fernando Plo & Henar Urmeneta, 2013. "A generalized Pólya urn and limit laws for the number of outputs in a family of random circuits," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 46-61, March.
    7. Mailler, Cécile & Marckert, Jean-François, 2022. "Parameterised branching processes: A functional version of Kesten & Stigum theorem," Stochastic Processes and their Applications, Elsevier, vol. 152(C), pages 339-377.
    8. Gopal K. Basak & Amites Dasgupta, 2006. "Central and Functional Central Limit Theorems for a Class of Urn Models," Journal of Theoretical Probability, Springer, vol. 19(3), pages 741-756, December.
    9. Kortchemski, Igor, 2015. "A predator–prey SIR type dynamics on large complete graphs with three phase transitions," Stochastic Processes and their Applications, Elsevier, vol. 125(3), pages 886-917.
    10. Yuan, Ao & Chai, Gen Xiang, 2008. "Optimal adaptive generalized Polya urn design for multi-arm clinical trials," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 1-24, January.
    11. Dimitris Cheliotis & Dimitra Kouloumpou, 2022. "Functional Limit Theorems for the Pólya Urn," Journal of Theoretical Probability, Springer, vol. 35(3), pages 2038-2051, September.
    12. Kaj, Ingemar & Tahir, Daniah, 2019. "Stochastic equations and limit results for some two-type branching models," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 35-46.
    13. Patrizia Berti & Irene Crimaldi & Luca Pratelli & Pietro Rigo, 2009. "Central Limit Theorems For Multicolor Urns With Dominated Colors," Quaderni di Dipartimento 106, University of Pavia, Department of Economics and Quantitative Methods.
    14. Berbeglia, Franco & Berbeglia, Gerardo & Van Hentenryck, Pascal, 2021. "Market segmentation in online platforms," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1025-1041.
    15. Alimpiev, Egor & Rosenberg, Noah A., 2022. "A compendium of covariances and correlation coefficients of coalescent tree properties," Theoretical Population Biology, Elsevier, vol. 143(C), pages 1-13.
    16. Chen Chen & Hosam Mahmoud, 2018. "The continuous-time triangular Pólya process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 303-321, April.
    17. Mitsokapas, Evangelos & Harris, Rosemary J., 2022. "Decision-making with distorted memory: Escaping the trap of past experience," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    18. Dasgupta, Amites, 2024. "Azuma-Hoeffding bounds for a class of urn models," Statistics & Probability Letters, Elsevier, vol. 204(C).
    19. Yuan Ao & Li Qizhai & Xiong Ming & Tan Ming T., 2016. "Adaptive Design for Staggered-Start Clinical Trial," The International Journal of Biostatistics, De Gruyter, vol. 12(2), pages 1-17, November.
    20. Kolesko, Konrad & Sava-Huss, Ecaterina, 2023. "Limit theorems for discrete multitype branching processes counted with a characteristic," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 49-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:149:y:2023:i:c:p:27-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.