IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v12y2016i2p17n1.html
   My bibliography  Save this article

Adaptive Design for Staggered-Start Clinical Trial

Author

Listed:
  • Yuan Ao

    (Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC 20057, USA)

  • Li Qizhai

    (Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China)

  • Xiong Ming

    (School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China)

  • Tan Ming T.

    (Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC 20057, USA)

Abstract

In phase II and/or III clinical trial study, there are several competing treatments, the goal is to assess the performances of the treatments at the end of the study, the trial design aims to minimize risks to the patients in the trial, according to some given allocation optimality criterion. Recently, a new type of clinical trial, the staggered-start trial has been proposed in some studies, in which different treatments enter the same trial at different times. Some basic questions for this trial are whether optimality can still be kept? under what conditions? and if so how to allocate the the coming patients to treatments to achieve such optimality? Here we propose and study a class of adaptive designs of staggered-start clinical trials, in which for given optimality criterion object, we show that as long as the initial sizes at the beginning of the successive trials are not too large relative to the total sample size, the proposed design can still achieve optimality criterion asymptotically for the allocation proportions as the ordinary trials; if these initial sample sizes have about the same magnitude as the total sample size, full optimality cannot be achieved. The proposed method is simple to use and is illustrated with several examples and a simulation study.

Suggested Citation

  • Yuan Ao & Li Qizhai & Xiong Ming & Tan Ming T., 2016. "Adaptive Design for Staggered-Start Clinical Trial," The International Journal of Biostatistics, De Gruyter, vol. 12(2), pages 1-17, November.
  • Handle: RePEc:bpj:ijbist:v:12:y:2016:i:2:p:17:n:1
    DOI: 10.1515/ijb-2015-0011
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/ijb-2015-0011
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/ijb-2015-0011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Janson, Svante, 2004. "Functional limit theorems for multitype branching processes and generalized Pólya urns," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 177-245, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soumaya Idriss & Hosam Mahmoud, 2023. "Exact Covariances and Refined Asymptotics in Dichromatic Tenable Balanced Pólya Urn Schemes," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-16, June.
    2. Crimaldi, Irene & Dai Pra, Paolo & Louis, Pierre-Yves & Minelli, Ida G., 2019. "Synchronization and functional central limit theorems for interacting reinforced random walks," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 70-101.
    3. Berti, Patrizia & Crimaldi, Irene & Pratelli, Luca & Rigo, Pietro, 2010. "Central limit theorems for multicolor urns with dominated colors," Stochastic Processes and their Applications, Elsevier, vol. 120(8), pages 1473-1491, August.
    4. Michael D Nicholson & Tibor Antal, 2019. "Competing evolutionary paths in growing populations with applications to multidrug resistance," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-25, April.
    5. José Moler & Fernando Plo & Henar Urmeneta, 2013. "A generalized Pólya urn and limit laws for the number of outputs in a family of random circuits," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 46-61, March.
    6. Mailler, Cécile & Marckert, Jean-François, 2022. "Parameterised branching processes: A functional version of Kesten & Stigum theorem," Stochastic Processes and their Applications, Elsevier, vol. 152(C), pages 339-377.
    7. Gopal K. Basak & Amites Dasgupta, 2006. "Central and Functional Central Limit Theorems for a Class of Urn Models," Journal of Theoretical Probability, Springer, vol. 19(3), pages 741-756, December.
    8. Kortchemski, Igor, 2015. "A predator–prey SIR type dynamics on large complete graphs with three phase transitions," Stochastic Processes and their Applications, Elsevier, vol. 125(3), pages 886-917.
    9. Yuan, Ao & Chai, Gen Xiang, 2008. "Optimal adaptive generalized Polya urn design for multi-arm clinical trials," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 1-24, January.
    10. Dimitris Cheliotis & Dimitra Kouloumpou, 2022. "Functional Limit Theorems for the Pólya Urn," Journal of Theoretical Probability, Springer, vol. 35(3), pages 2038-2051, September.
    11. Kaj, Ingemar & Tahir, Daniah, 2019. "Stochastic equations and limit results for some two-type branching models," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 35-46.
    12. Kaur, Gursharn & Choi, Kwok Pui & Wu, Taoyang, 2023. "Distributions of cherries and pitchforks for the Ford model," Theoretical Population Biology, Elsevier, vol. 149(C), pages 27-38.
    13. Patrizia Berti & Irene Crimaldi & Luca Pratelli & Pietro Rigo, 2009. "Central Limit Theorems For Multicolor Urns With Dominated Colors," Quaderni di Dipartimento 106, University of Pavia, Department of Economics and Quantitative Methods.
    14. Berbeglia, Franco & Berbeglia, Gerardo & Van Hentenryck, Pascal, 2021. "Market segmentation in online platforms," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1025-1041.
    15. Chen Chen & Hosam Mahmoud, 2018. "The continuous-time triangular Pólya process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 303-321, April.
    16. Mitsokapas, Evangelos & Harris, Rosemary J., 2022. "Decision-making with distorted memory: Escaping the trap of past experience," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    17. Dasgupta, Amites, 2024. "Azuma-Hoeffding bounds for a class of urn models," Statistics & Probability Letters, Elsevier, vol. 204(C).
    18. Kolesko, Konrad & Sava-Huss, Ecaterina, 2023. "Limit theorems for discrete multitype branching processes counted with a characteristic," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 49-75.
    19. Brigitte Chauvin & Cécile Mailler & Nicolas Pouyanne, 2015. "Smoothing Equations for Large Pólya Urns," Journal of Theoretical Probability, Springer, vol. 28(3), pages 923-957, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:12:y:2016:i:2:p:17:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.