IDEAS home Printed from https://ideas.repec.org/a/eee/telpol/v48y2024i7s0308596124000879.html
   My bibliography  Save this article

How does technological value drive 6G development? Explanation from a systematic framework

Author

Listed:
  • Xiang, Panwei
  • Wei, Muhua
  • Liu, Huili
  • Wu, Lianren
  • Qi, Jiayin

Abstract

As a novel form of infrastructure, 6G is poised to become an indispensable component of the future digital economy and serves as a solid guarantee for the development of human society. Given that technological innovation inherently possesses purpose and direction, its progress cannot be divorced from the correct value orientation. However, scholarly attention towards investigating the value proposition of 6G remains limited. Establishing a scientific and rational value system assumes paramount importance in shaping future investments and deployments of 6G and fostering advancements in associated technologies. This paper presents a comprehensive analysis of the value proposition of 6G, examining it from multiple perspectives including economic, social, ecological, cultural, and strategic dimensions. In addition, we explore the four vertical value dimensions of nation, industry, firm and individual. By integrating the technology life cycle framework into our consideration, we elucidate how value is realized and evolves across different stages. The primary objective of this paper is to enhance comprehension regarding the value of 6G and forthcoming technologies while extensively expounding on the potential contributions of 6G towards future economic and social development.

Suggested Citation

  • Xiang, Panwei & Wei, Muhua & Liu, Huili & Wu, Lianren & Qi, Jiayin, 2024. "How does technological value drive 6G development? Explanation from a systematic framework," Telecommunications Policy, Elsevier, vol. 48(7).
  • Handle: RePEc:eee:telpol:v:48:y:2024:i:7:s0308596124000879
    DOI: 10.1016/j.telpol.2024.102790
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308596124000879
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.telpol.2024.102790?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bresnahan, Timothy F. & Trajtenberg, M., 1995. "General purpose technologies 'Engines of growth'?," Journal of Econometrics, Elsevier, vol. 65(1), pages 83-108, January.
    2. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    3. Elstner, Steffen & Grimme, Christian & Kecht, Valentin & Lehmann, Robert, 2022. "The diffusion of technological progress in ICT," European Economic Review, Elsevier, vol. 149(C).
    4. Sergio Petralia, 2020. "Mapping General Purpose Technologies with Patent Data," Papers in Evolutionary Economic Geography (PEEG) 2027, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jul 2020.
    5. Christiaan Hogendorn & Brett Frischmann, 2020. "Infrastructure and general purpose technologies: a technology flow framework," European Journal of Law and Economics, Springer, vol. 50(3), pages 469-488, December.
    6. Liao, Hailin & Wang, Bin & Li, Baibing & Weyman-Jones, Tom, 2016. "ICT as a general-purpose technology: The productivity of ICT in the United States revisited," Information Economics and Policy, Elsevier, vol. 36(C), pages 10-25.
    7. Marin, Giovanni, 2014. "Do eco-innovations harm productivity growth through crowding out? Results of an extended CDM model for Italy," Research Policy, Elsevier, vol. 43(2), pages 301-317.
    8. Rahul Kapoor & David J. Teece, 2021. "Three Faces of Technology’s Value Creation: Emerging, Enabling, Embedding," Strategy Science, INFORMS, vol. 6(1), pages 1-4, March.
    9. Şimşek, Tolga & Öner, M Atilla & Kunday, Özlem & Olcay, Gökçen Arkalı, 2022. "A journey towards a digital platform business model: A case study in a global tech-company," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    10. Ojutkangas, Kirsi & Rossi, Elina & Matinmikko-Blue, Marja, 2022. "A deep dive into the birth process of linking 6G and the UN SDGs," Telecommunications Policy, Elsevier, vol. 46(1).
    11. Teece, David J., 2018. "Profiting from innovation in the digital economy: Enabling technologies, standards, and licensing models in the wireless world," Research Policy, Elsevier, vol. 47(8), pages 1367-1387.
    12. Taylor, Margaret & Taylor, Andrew, 2012. "The technology life cycle: Conceptualization and managerial implications," International Journal of Production Economics, Elsevier, vol. 140(1), pages 541-553.
    13. Soltanzadeh, Javad & Blind, Knut & Elyasi, Mehdi, 2023. "Exploring how regulators face platform business issues in the lifecycle stages: Evidence of iranian ride-hailing platform business," Telecommunications Policy, Elsevier, vol. 47(7).
    14. Huang, Ying & Li, Ruinan & Zou, Fang & Jiang, Lidan & Porter, Alan L. & Zhang, Lin, 2022. "Technology life cycle analysis: From the dynamic perspective of patent citation networks," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    15. Zhang, Jing & Liang, Xiong-Jian, 2011. "Business ecosystem strategies of mobile network operators in the 3G era: The case of China Mobile," Telecommunications Policy, Elsevier, vol. 35(2), pages 156-171, March.
    16. Birgitte Andersen, 1999. "The hunt for S-shaped growth paths in technological innovation: a patent study," Journal of Evolutionary Economics, Springer, vol. 9(4), pages 487-526.
    17. Huub Meijers, 2014. "Does the internet generate economic growth, international trade, or both?," International Economics and Economic Policy, Springer, vol. 11(1), pages 137-163, February.
    18. Jovanovic, Boyan & Rousseau, Peter L., 2005. "General Purpose Technologies," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 18, pages 1181-1224, Elsevier.
    19. Vijay Sethi & William R. King, 1994. "Development of Measures to Assess the Extent to Which an Information Technology Application Provides Competitive Advantage," Management Science, INFORMS, vol. 40(12), pages 1601-1627, December.
    20. Ashish Sood & Gerard J. Tellis, 2011. "Demystifying Disruption: A New Model for Understanding and Predicting Disruptive Technologies," Marketing Science, INFORMS, vol. 30(2), pages 339-354, 03-04.
    21. Aldashev, Alisher & Batkeyev, Birzhan, 2021. "Broadband Infrastructure and Economic Growth in Rural Areas," Information Economics and Policy, Elsevier, vol. 57(C).
    22. Godoe, Helge, 2000. "Innovation regimes, R&D and radical innovations in telecommunications," Research Policy, Elsevier, vol. 29(9), pages 1033-1046, December.
    23. Nina Czernich & Oliver Falck & Tobias Kretschmer & Ludger Woessmann, 2011. "Broadband Infrastructure and Economic Growth," Economic Journal, Royal Economic Society, vol. 121(552), pages 505-532, May.
    24. Ahokangas, Petri & Gisca, Oxana & Matinmikko-Blue, Marja & Yrjölä, Seppo & Gordon, Jillian, 2023. "Toward an integrated framework for developing European 6G innovation," Telecommunications Policy, Elsevier, vol. 47(9).
    25. Calderini, Mario & Fia, Magali & Gerli, Francesco, 2023. "Organizing for transformative innovation policies: The role of social enterprises. Theoretical insights and evidence from Italy," Research Policy, Elsevier, vol. 52(7).
    26. Clifford Bekar & Kenneth Carlaw & Richard Lipsey, 2018. "General purpose technologies in theory, application and controversy: a review," Journal of Evolutionary Economics, Springer, vol. 28(5), pages 1005-1033, December.
    27. Lo, Shih-tse & Sutthiphisal, Dhanoos, 2010. "Crossover Inventions and Knowledge Diffusion of General Purpose Technologies: Evidence from the Electrical Technology," The Journal of Economic History, Cambridge University Press, vol. 70(3), pages 744-764, September.
    28. Petralia, Sergio, 2020. "Mapping general purpose technologies with patent data," Research Policy, Elsevier, vol. 49(7).
    29. Joshua S. Gans & Michael Kearney & Erin L. Scott & Scott Stern, 2021. "Choosing Technology: An Entrepreneurial Strategy Approach," Strategy Science, INFORMS, vol. 6(1), pages 39-53, March.
    30. Levinthal, Daniel A, 1998. "The Slow Pace of Rapid Technological Change: Gradualism and Punctuation in Technological Change," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 7(2), pages 217-247, June.
    31. Lee, Jeongwon & Hwang, Junseok & Kim, Hana, 2022. "Different government support effects on emerging and mature ICT sectors," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    32. Diercks, Gijs & Larsen, Henrik & Steward, Fred, 2019. "Transformative innovation policy: Addressing variety in an emerging policy paradigm," Research Policy, Elsevier, vol. 48(4), pages 880-894.
    33. Radosevic, Slavo & Yoruk, Esin, 2018. "Technology upgrading of middle income economies: A new approach and results," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 56-75.
    34. Vu, Khuong & Hanafizadeh, Payam & Bohlin, Erik, 2020. "ICT as a driver of economic growth: A survey of the literature and directions for future research," Telecommunications Policy, Elsevier, vol. 44(2).
    35. Yoruk, Esin & Radosevic, Slavo & Fischer, Bruno, 2023. "Technological profiles, upgrading and the dynamics of growth: Country-level patterns and trajectories across distinct stages of development," Research Policy, Elsevier, vol. 52(8).
    36. Schot, Johan & Steinmueller, W. Edward, 2018. "Three frames for innovation policy: R&D, systems of innovation and transformative change," Research Policy, Elsevier, vol. 47(9), pages 1554-1567.
    37. Rajiv Banker & Zhanwei Cao & Nirup M. Menon & Ram Mudambi, 2013. "The Red Queen in action: The longitudinal effects of capital investments in the mobile telecommunications sector," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 22(5), pages 1195-1228, October.
    38. Heikkilä, Jussi & Rissanen, Julius & Ali-Vehmas, Timo, 2023. "Coopetition, standardization and general purpose technologies: A framework and an application," Telecommunications Policy, Elsevier, vol. 47(4).
    39. T. D. Stanley & Hristos Doucouliagos & Piers Steel, 2018. "Does Ict Generate Economic Growth? A Meta†Regression Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 32(3), pages 705-726, July.
    40. Matinmikko-Blue, Marja & Yrjölä, Seppo & Ahokangas, Petri, 2024. "Multi-perspective approach for developing sustainable 6G mobile communications," Telecommunications Policy, Elsevier, vol. 48(2).
    41. Carlota Perez, 2010. "Technological revolutions and techno-economic paradigms," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 34(1), pages 185-202, January.
    42. Su, Yu-Shan & Huang, Hsini & Daim, Tugrul & Chien, Pan-Wei & Peng, Ru-Ling & Karaman Akgul, Arzu, 2023. "Assessing the technological trajectory of 5G-V2X autonomous driving inventions: Use of patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    43. Shin, Hyunjin & Park, Sanghyun & Kim, Leehee & Kim, Jinseob & Kim, Taeeun & Song, Youngkeun & Lee, Sungjoo, 2024. "The future service scenarios of 6G telecommunications technology," Telecommunications Policy, Elsevier, vol. 48(2).
    44. Jeon, Chunmi & Han, Seung Hun & Kim, Hyeong Joon & Kim, Sangsoo, 2022. "The effect of government 5G policies on telecommunication operators’ firm value: Evidence from China," Telecommunications Policy, Elsevier, vol. 46(2).
    45. Tang, Chang & Xu, Yuanyuan & Hao, Yu & Wu, Haitao & Xue, Yan, 2021. "What is the role of telecommunications infrastructure construction in green technology innovation? A firm-level analysis for China," Energy Economics, Elsevier, vol. 103(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heikkilä, Jussi & Rissanen, Julius & Ali-Vehmas, Timo, 2023. "Coopetition, standardization and general purpose technologies: A framework and an application," Telecommunications Policy, Elsevier, vol. 47(4).
    2. Kroll, Henning & Berghäuser, Hendrik & Blind, Knut & Neuhäusler, Peter & Scheifele, Fabian & Thielmann, Axel & Wydra, Sven, 2022. "Schlüsseltechnologien," Studien zum deutschen Innovationssystem 7-2022, Expertenkommission Forschung und Innovation (EFI) - Commission of Experts for Research and Innovation, Berlin.
    3. Kemeny, Tom & Petralia, Sergio & Storper, Michael, 2022. "Disruptive innovation and spatial inequality," LSE Research Online Documents on Economics 115953, London School of Economics and Political Science, LSE Library.
    4. Goldfarb, Avi & Taska, Bledi & Teodoridis, Florenta, 2023. "Could machine learning be a general purpose technology? A comparison of emerging technologies using data from online job postings," Research Policy, Elsevier, vol. 52(1).
    5. Yoruk, Esin & Radosevic, Slavo & Fischer, Bruno, 2023. "Technological profiles, upgrading and the dynamics of growth: Country-level patterns and trajectories across distinct stages of development," Research Policy, Elsevier, vol. 52(8).
    6. Simone Vannuccini & Ekaterina Prytkova, 2021. "Artificial Intelligence’s New Clothes? From General Purpose Technology to Large Technical System," SPRU Working Paper Series 2021-02, SPRU - Science Policy Research Unit, University of Sussex Business School.
    7. Vu, Khuong & Hanafizadeh, Payam & Bohlin, Erik, 2020. "ICT as a driver of economic growth: A survey of the literature and directions for future research," Telecommunications Policy, Elsevier, vol. 44(2).
    8. Ekaterina Prytkova, 2021. "ICT's Wide Web: a System-Level Analysis of ICT's Industrial Diffusion with Algorithmic Links," Jena Economics Research Papers 2021-005, Friedrich-Schiller-University Jena.
    9. Papaioannou, Sotiris K., 2023. "ICT and economic resilience: Evidence from the COVID-19 pandemic," Economic Modelling, Elsevier, vol. 128(C).
    10. Waßenhoven, Anna & Rennings, Michael & Laibach, Natalie & Bröring, Stefanie, 2023. "What constitutes a “Key Enabling Technology” for transition processes: Insights from the bioeconomy's technological landscape," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    11. Mark Knell & Simone Vannuccini, 2022. "Tools and concepts for understanding disruptive technological change after Schumpeter," Jena Economics Research Papers 2022-005, Friedrich-Schiller-University Jena.
    12. Edquist, Harald, 2022. "The economic impact of mobile broadband speed," Telecommunications Policy, Elsevier, vol. 46(5).
    13. Christiaan Hogendorn & Brett Frischmann, 2020. "Infrastructure and general purpose technologies: a technology flow framework," European Journal of Law and Economics, Springer, vol. 50(3), pages 469-488, December.
    14. Castelnovo, Paolo & Florio, Massimo & Forte, Stefano & Rossi, Lucio & Sirtori, Emanuela, 2018. "The economic impact of technological procurement for large-scale research infrastructures: Evidence from the Large Hadron Collider at CERN," Research Policy, Elsevier, vol. 47(9), pages 1853-1867.
    15. Ajoy Ketan Sarangi & Rudra Prakash Pradhan, 2020. "ICT infrastructure and economic growth: a critical assessment and some policy implications," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(4), pages 363-383, December.
    16. Rahul Kapoor & Thomas Klueter, 2021. "Unbundling and Managing Uncertainty Surrounding Emerging Technologies," Strategy Science, INFORMS, vol. 6(1), pages 62-74, March.
    17. Hüseyin Taştan & Feride Gönel, 2020. "ICT labor, software usage, and productivity: firm-level evidence from Turkey," Journal of Productivity Analysis, Springer, vol. 53(2), pages 265-285, April.
    18. Kemnitz, Alexander & Knoblach, Michael, 2020. "Endogenous sigma-augmenting technological change: An R&D-based approach," CEPIE Working Papers 02/20, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    19. Harald Bathelt & Michael Storper, 2022. "Related Variety and Regional Development," Papers in Evolutionary Economic Geography (PEEG) 2214, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Aug 2022.
    20. Shunbin Zhong & Mengding Li & Yihui Liu & Yun Bai, 2023. "Do Internet Development and Urbanization Foster Regional Economic Growth: Evidence from China’s Yangtze River Economic Belt," Sustainability, MDPI, vol. 15(12), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:telpol:v:48:y:2024:i:7:s0308596124000879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30471/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.