IDEAS home Printed from https://ideas.repec.org/a/eee/iepoli/v36y2016icp10-25.html
   My bibliography  Save this article

ICT as a general-purpose technology: The productivity of ICT in the United States revisited

Author

Listed:
  • Liao, Hailin
  • Wang, Bin
  • Li, Baibing
  • Weyman-Jones, Tom

Abstract

Researchers have long been puzzled by ICT's (Information and Communication Technology) contributions towards (productivity) growth. This paper investigates and reveals the multi-facets of ICT productivity and the mechanism through which ICT affects productivity by bringing all the distinct streams of existing findings together. In particular, we develop a two-level frontier-efficiency model to examine how ICT's direct and indirect impact on different components of productivity is related to the economic growth in the US. Our empirical analysis has confirmed that ICT investment does contribute to productivity but not in the usual manner – we find a positive (but lagged) ICT effect on technological progress. We argue that for a positive ICT role on growth to actually take place, a period of negative relationship between productivity and ICT investment together with ICT-using sectors’ capacity to learn from the embodied new technology was crucial. In addition, it took a learning period with appropriate complementary co-inventions for the new ICT-capital to become effective and its gains to be realized. Our findings provide solid, further empirical evidence to support ICT as a general purpose technology.

Suggested Citation

  • Liao, Hailin & Wang, Bin & Li, Baibing & Weyman-Jones, Tom, 2016. "ICT as a general-purpose technology: The productivity of ICT in the United States revisited," Information Economics and Policy, Elsevier, vol. 36(C), pages 10-25.
  • Handle: RePEc:eee:iepoli:v:36:y:2016:i:c:p:10-25
    DOI: 10.1016/j.infoecopol.2016.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167624516300348
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.infoecopol.2016.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bresnahan, Timothy F. & Trajtenberg, M., 1995. "General purpose technologies 'Engines of growth'?," Journal of Econometrics, Elsevier, vol. 65(1), pages 83-108, January.
    2. Dale W. Jorgenson & Mun S. Ho & Kevin J. Stiroh, 2008. "A Retrospective Look at the U.S. Productivity Growth Resurgence," Journal of Economic Perspectives, American Economic Association, vol. 22(1), pages 3-24, Winter.
    3. Marcel P. Timmer & Mary O'Mahony & Bart van Ark, 2007. "Growth and productivity accounts from EU KLEMS: An overview," National Institute Economic Review, National Institute of Economic and Social Research, vol. 200(1), pages 64-78, April.
    4. repec:bla:germec:v:8:y:2007:i::p:255-280 is not listed on IDEAS
    5. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676, July.
    6. Stephen D. Oliner & Daniel E. Sichel, 2000. "The Resurgence of Growth in the Late 1990s: Is Information Technology the Story?," Journal of Economic Perspectives, American Economic Association, vol. 14(4), pages 3-22, Fall.
    7. Oliner, Stephen D. & Sichel, Daniel E. & Stiroh, Kevin J., 2008. "Explaining a productive decade," Journal of Policy Modeling, Elsevier, vol. 30(4), pages 633-673.
    8. Susanto Basu & David N. Weil, 1998. "Appropriate Technology and Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1025-1054.
    9. Michael R. Pakko, 2002. "What Happens When the Technology Growth Trend Changes?: Transition Dynamics, Capital Growth and the 'New Economy'," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 5(2), pages 376-407, April.
    10. repec:bla:obuest:v:61:y:1999:i:4:p:455-87 is not listed on IDEAS
    11. Kenneth I. Carlaw & Richard G. Lipsey, 2006. "Gpt-Driven, Endogenous Growth," Economic Journal, Royal Economic Society, vol. 116(508), pages 155-174, January.
    12. Marcel P. Timmer & Mary O’Mahony & Bart van Ark, 2007. "EU KLEMS Growth and Productivity Accounts: An Overview," International Productivity Monitor, Centre for the Study of Living Standards, vol. 14, pages 71-85, Spring.
    13. Robert J. Gordon, 2000. "Does the "New Economy" Measure Up to the Great Inventions of the Past?," Journal of Economic Perspectives, American Economic Association, vol. 14(4), pages 49-74, Fall.
    14. Timothy F. Bresnahan & Erik Brynjolfsson & Lorin M. Hitt, 2002. "Information Technology, Workplace Organization, and the Demand for Skilled Labor: Firm-Level Evidence," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(1), pages 339-376.
    15. Sanjeev Dewan & Kenneth L. Kraemer, 2000. "Information Technology and Productivity: Evidence from Country-Level Data," Management Science, INFORMS, vol. 46(4), pages 548-562, April.
    16. Mary O'Mahony & Catherine Robinson, 2007. "UK Growth and Productivity in an International Perspective: Evidence From EU Klems," National Institute Economic Review, National Institute of Economic and Social Research, vol. 200(1), pages 79-86, April.
    17. Ketteni, Elena & Mamuneas, Theofanis P. & Stengos, Thanasis, 2007. "Nonlinearities in economic growth: A semiparametric approach applied to information technology data," Journal of Macroeconomics, Elsevier, vol. 29(3), pages 555-568, September.
    18. Susanto Basu & John G. Fernald, 2008. "Information and communications technology as a general purpose technology: evidence from U.S. industry data," Economic Review, Federal Reserve Bank of San Francisco, pages 1-15.
    19. Lipsey, Richard G. & Carlaw, Kenneth I. & Bekar, Clifford T., 2005. "Economic Transformations: General Purpose Technologies and Long-Term Economic Growth," OUP Catalogue, Oxford University Press, number 9780199290895.
    20. L. Becchetti & David Bedoya & L. Paganetto, 2003. "ICT Investment, Productivity and Efficiency: Evidence at Firm Level Using a Stochastic Frontier Approach," Journal of Productivity Analysis, Springer, vol. 20(2), pages 143-167, September.
    21. Koop, Gary & Osiewalski, Jacek & Steel, Mark F J, 2000. "Modeling the Sources of Output Growth in a Panel of Countries," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 284-299, July.
    22. repec:dau:papers:123456789/10093 is not listed on IDEAS
    23. Basu, Susanto & Fernald, John G. & Shapiro, Matthew D., 2001. "Productivity growth in the 1990s: technology, utilization, or adjustment?," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 55(1), pages 117-165, December.
    24. Ohashi, Hiroshi, 2005. "Learning by doing, export subsidies, and industry growth: Japanese steel in the 1950s and 1960s," Journal of International Economics, Elsevier, vol. 66(2), pages 297-323, July.
    25. Mary O'Mahony & Marcel P. Timmer, 2009. "Output, Input and Productivity Measures at the Industry Level: The EU KLEMS Database," Economic Journal, Royal Economic Society, vol. 119(538), pages 374-403, June.
    26. Stiroh Kevin & Botsch Matthew, 2007. "Information Technology and Productivity Growth in the 2000s," German Economic Review, De Gruyter, vol. 8(2), pages 255-280, May.
    27. Dale W. Jorgenson & Mun S. Ho & Kevin J. Stiroh, 2005. "Growth of US Industries and Investments in Information Technology and Higher Education," NBER Chapters, in: Measuring Capital in the New Economy, pages 403-478, National Bureau of Economic Research, Inc.
    28. Stiroh, Kevin J, 1998. "Computers, Productivity, and Input Substitution," Economic Inquiry, Western Economic Association International, vol. 36(2), pages 175-191, April.
    29. Carlaw, Kenneth I. & Lipsey, Richard G., 2002. "Externalities, technological complementarities and sustained economic growth," Research Policy, Elsevier, vol. 31(8-9), pages 1305-1315, December.
    30. Oliner, Stephen D. & Sichel, Daniel E., 2003. "Information technology and productivity: where are we now and where are we going?," Journal of Policy Modeling, Elsevier, vol. 25(5), pages 477-503, July.
    31. Elena Ketteni, 2009. "Information technology and economic performance in U.S industries," Canadian Journal of Economics, Canadian Economics Association, vol. 42(3), pages 844-865, August.
    32. Carlaw, Kenneth I. & Oxley, Les, 2008. "Resolving the productivity paradox," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 313-318.
    33. Andreas Hornstein & Per Krusell, 1996. "Can Technology Improvements Cause Productivity Slowdowns?," NBER Chapters, in: NBER Macroeconomics Annual 1996, Volume 11, pages 209-276, National Bureau of Economic Research, Inc.
    34. David, Paul A, 1990. "The Dynamo and the Computer: An Historical Perspective on the Modern Productivity Paradox," American Economic Review, American Economic Association, vol. 80(2), pages 355-361, May.
    35. Robert Inklaar & Mary O'Mahony & Marcel Timmer, 2005. "ICT AND EUROPE's PRODUCTIVITY PERFORMANCE: INDUSTRY‐LEVEL GROWTH ACCOUNT COMPARISONS WITH THE UNITED STATES," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 51(4), pages 505-536, December.
    36. Dale W. Jorgenson & Kevin J. Stiroh, 2000. "Raising the Speed Limit: U.S. Economic Growth in the Information Age," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 31(1), pages 125-236.
    37. Erik Brynjolfsson & Lorin M. Hitt, 2000. "Beyond Computation: Information Technology, Organizational Transformation and Business Performance," Journal of Economic Perspectives, American Economic Association, vol. 14(4), pages 23-48, Fall.
    38. Robert H. McGuckin, 2002. "Computers and Productivity: are Aggregation Effects Important?," Economic Inquiry, Western Economic Association International, vol. 40(1), pages 42-59, January.
    39. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    40. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    41. Cohen, Wesley M & Levinthal, Daniel A, 1989. "Innovation and Learning: The Two Faces of R&D," Economic Journal, Royal Economic Society, vol. 99(397), pages 569-596, September.
    42. Eve Caroli & John Van Reenen, 2001. "Skill-Biased Organizational Change? Evidence from A Panel of British and French Establishments," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(4), pages 1449-1492.
    43. Baker, Bruce D., 2001. "Can flexible non-linear modeling tell us anything new about educational productivity?," Economics of Education Review, Elsevier, vol. 20(1), pages 81-92, February.
    44. C. Lanier Benkard, 2000. "Learning and Forgetting: The Dynamics of Aircraft Production," American Economic Review, American Economic Association, vol. 90(4), pages 1034-1054, September.
    45. Kiley, Michael T., 2001. "Computers and growth with frictions: aggregate and disaggregate evidence," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 55(1), pages 171-215, December.
    46. Erik Brynjolfsson & Lorin Hitt, 1996. "Paradox Lost? Firm-Level Evidence on the Returns to Information Systems Spending," Management Science, INFORMS, vol. 42(4), pages 541-558, April.
    47. Gary Koop & Jacek Osiewalski & Mark F. J. Steel, 1999. "The Components of Output Growth: A Stochastic Frontier Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(4), pages 455-487, November.
    48. repec:bla:germec:v:8:y:2007:i::p:146-173 is not listed on IDEAS
    49. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    50. Alessandra Colecchia & Paul Schreyer, 2002. "ICT Investment and Economic Growth in the 1990s: Is the United States a Unique Case? A Comparative Study of Nine OECD Countries," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 5(2), pages 408-442, April.
    51. Vu, Khuong M., 2013. "Information and Communication Technology (ICT) and Singapore’s economic growth," Information Economics and Policy, Elsevier, vol. 25(4), pages 284-300.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Ark, Bart & de Vries, Klaas & Erumban, Abdul, 2021. "How To Not Miss A Productivity Revival Once Again," National Institute Economic Review, National Institute of Economic and Social Research, vol. 255, pages 9-24, February.
    2. Michele Cincera & Ela Ince, 2019. "Types of Innovation and Firm performance," Working Papers TIMES² 2019-032, ULB -- Universite Libre de Bruxelles.
    3. Shakina, Elena & Parshakov, Petr & Alsufiev, Artem, 2021. "Rethinking the corporate digital divide: The complementarity of technologies and the demand for digital skills," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    4. Sun, Hongye & Kim, Giseung, 2021. "The composite impact of ICT industry on lowering carbon intensity: From the perspective of regional heterogeneity," Technology in Society, Elsevier, vol. 66(C).
    5. Keyong Zhang & Sulun Li & Peng Qin & Bohong Wang, 2022. "Spatial and Temporal Effects of Digital Technology Development on Carbon Emissions: Evidence from China," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    6. Lee, Chien-Chiang & Yuan, Zihao & Wang, Qiaoru, 2022. "How does information and communication technology affect energy security? International evidence," Energy Economics, Elsevier, vol. 109(C).
    7. Calogero Guccio & Marco Martorana & Isidoro Mazza & Ilde Rizzo, 2021. "Back to the Future: Does the use of information and communication technology enhance the performance of public historical archives?," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 45(1), pages 13-43, March.
    8. Heikkilä, Jussi & Rissanen, Julius & Ali-Vehmas, Timo, 2023. "Coopetition, standardization and general purpose technologies: A framework and an application," Telecommunications Policy, Elsevier, vol. 47(4).
    9. Bart van Ark & Klaas de Vries & Abdul Erumban, 2019. "Productivity & Innovation Competencies in the Midst of the Digital Transformation Age: A EU-US Comparison," European Economy - Discussion Papers 119, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    10. Charles Shaaba Saba & Nicholas Ngepah, 2022. "Nexus between telecommunication infrastructures, defence and economic growth: a global evidence," Netnomics, Springer, vol. 22(2), pages 139-177, October.
    11. Mulligan, Catherine & Morsfield, Suzanne & Cheikosman, Evîn, 2024. "Blockchain for sustainability: A systematic literature review for policy impact," Telecommunications Policy, Elsevier, vol. 48(2).
    12. Thomas Scherngell & Charlotte Rohde & Martina Neuländtner, 2020. "The dynamics of global R&D collaboration networks in ICT: Does China catch up with the US?," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-17, September.
    13. Congbo Chen & Azhong Ye, 2021. "Heterogeneous Effects of ICT across Multiple Economic Development in Chinese Cities: A Spatial Quantile Regression Model," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    14. Stamopoulos, Dimitrios & Dimas, Petros & Tsakanikas, Aggelos, 2022. "Exploring the structural effects of the ICT sector in the Greek economy: A quantitative approach based on input-output and network analysis," Telecommunications Policy, Elsevier, vol. 46(7).
    15. Liu, Yong & Du, Jun-liang & Yang, Jin-bi & Qian, Wu-yong & Forrest, Jeffrey Yi-Lin, 2019. "An incentive mechanism for general purpose technologies R&D based on the concept of super-conflict equilibrium: Empirical evidence from nano industrial technology in China," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 185-197.
    16. Christiaan Hogendorn & Brett Frischmann, 2020. "Infrastructure and general purpose technologies: a technology flow framework," European Journal of Law and Economics, Springer, vol. 50(3), pages 469-488, December.
    17. Tilman Santarius & Johanna Pohl & Steffen Lange, 2020. "Digitalization and the Decoupling Debate: Can ICT Help to Reduce Environmental Impacts While the Economy Keeps Growing?," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    18. Qing Wang & Wenjing Xu & Yanghua Huang & Jidong Yang, 2022. "The Effect of Fast Internet on Employment: Evidence from a Large Broadband Expansion Program in China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 30(3), pages 100-134, May.
    19. Christiaan Hogendorn & Brett Frischmann, 2017. "Infrastructure and General Purpose Technologies: A Technology Flow Framework," Wesleyan Economics Working Papers 2017-001, Wesleyan University, Department of Economics.
    20. Khanna, Rupika & Sharma, Chandan, 2022. "Impact of information technology on firm performance: New evidence from Indian manufacturing," Information Economics and Policy, Elsevier, vol. 60(C).
    21. Dehghan Shabani, Zahra & Shahnazi, Rouhollah, 2019. "Energy consumption, carbon dioxide emissions, information and communications technology, and gross domestic product in Iranian economic sectors: A panel causality analysis," Energy, Elsevier, vol. 169(C), pages 1064-1078.
    22. Vu, Khuong & Hanafizadeh, Payam & Bohlin, Erik, 2020. "ICT as a driver of economic growth: A survey of the literature and directions for future research," Telecommunications Policy, Elsevier, vol. 44(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliner, Stephen D. & Sichel, Daniel E. & Stiroh, Kevin J., 2008. "Explaining a productive decade," Journal of Policy Modeling, Elsevier, vol. 30(4), pages 633-673.
    2. Lach, Saul & Trajtenberg, Manuel & Shiff, Gil, 2008. "Together but Apart: ICT and Productivity Growth in Israel," CEPR Discussion Papers 6732, C.E.P.R. Discussion Papers.
    3. Oulton, Nicholas, 2012. "Long term implications of the ICT revolution: Applying the lessons of growth theory and growth accounting," Economic Modelling, Elsevier, vol. 29(5), pages 1722-1736.
    4. Meijers, Huub, 2007. "ICT Externalities: Evidence from cross country data," MERIT Working Papers 2007-021, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    5. Sang-Yong Tom Lee & Xiao Jia Guo, 2004. "Information and Communications Technology (ICT) and Spillover: A Panel Analysis," Econometric Society 2004 Far Eastern Meetings 722, Econometric Society.
    6. Kiley, Michael T., 2001. "Computers and growth with frictions: aggregate and disaggregate evidence," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 55(1), pages 171-215, December.
    7. repec:pri:cepsud:113krusell is not listed on IDEAS
    8. Diego Aboal & Ezequiel Tacsir, 2018. "Innovation and productivity in services and manufacturing: the role of ICT," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 27(2), pages 221-241.
    9. Hornstein, Andreas & Krusell, Per & Violante, Giovanni L., 2005. "The Effects of Technical Change on Labor Market Inequalities," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 20, pages 1275-1370, Elsevier.
    10. John G. Fernald, 2015. "Productivity and Potential Output before, during, and after the Great Recession," NBER Macroeconomics Annual, University of Chicago Press, vol. 29(1), pages 1-51.
    11. Marianna Belloc & Paolo Guerrieri, 2015. "Impact of ICT diffusion and adoption on sectoral industrial performance: evidence from a panel of European countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 32(1), pages 67-84, April.
    12. Hyunbae Chun, 2007. "The Impact Of Information Technology On Labor Productivity Growth: Evidence From Five OECD Countries, 1970-1990," Korean Economic Review, Korean Economic Association, vol. 23, pages 5-32.
    13. Hornstein, Andreas & Krusell, Per & Violante, Giovanni L., 2005. "The Effects of Technical Change on Labor Market Inequalities," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 20, pages 1275-1370, Elsevier.
    14. Stefan Schweikl & Robert Obermaier, 2020. "Lessons from three decades of IT productivity research: towards a better understanding of IT-induced productivity effects," Management Review Quarterly, Springer, vol. 70(4), pages 461-507, November.
    15. Ketteni, Elena & Mamuneas, Theofanis & Stengos, Thanasis, 2011. "The Effect Of Information Technology And Human Capital On Economic Growth," Macroeconomic Dynamics, Cambridge University Press, vol. 15(5), pages 595-615, November.
    16. Juan M. Gallego & Luis H. Gutiérrez & Sang H. Lee, 2015. "A firm-level analysis of ICT adoption in an emerging economy: evidence from the Colombian manufacturing industries," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 24(1), pages 191-221.
    17. Erik Brynjolfsson & Lorin M. Hitt, 2003. "Computing Productivity: Firm-Level Evidence," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 793-808, November.
    18. Stefanie Haller & Iulia Siedschlag, 2011. "Determinants of ICT adoption: evidence from firm-level data," Applied Economics, Taylor & Francis Journals, vol. 43(26), pages 3775-3788.
    19. Concetta Castiglione, 2012. "Technical efficiency and ICT investment in Italian manufacturing firms," Applied Economics, Taylor & Francis Journals, vol. 44(14), pages 1749-1763, May.
    20. Fueki, Takuji & Kawamoto, Takuji, 2009. "Does information technology raise Japan's productivity?," Japan and the World Economy, Elsevier, vol. 21(4), pages 325-336, December.
    21. Dimelis, Sophia P. & Papaioannou, Sotiris K., 2011. "ICT growth effects at the industry level: A comparison between the US and the EU," Information Economics and Policy, Elsevier, vol. 23(1), pages 37-50, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:iepoli:v:36:y:2016:i:c:p:10-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505549 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.